SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zabukovec Logar Nataša) "

Search: WFRF:(Zabukovec Logar Nataša)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Škrjanc, Aljaž, et al. (author)
  • Carbonyl-Supported Coordination in Imidazolates : A Platform for Designing Porous Nickel-Based ZIFs as Heterogeneous Catalysts
  • 2024
  • In: Small. - 1613-6810 .- 1613-6829. ; 20:6
  • Journal article (peer-reviewed)abstract
    • Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal–organic framework that have attracted considerable attention as potential functional materials due to their high chemical stability and ease of synthesis. ZIFs are usually composed of zinc ions coordinated with imidazole linkers, with some other transition metals, such as Cu(II) and Co(II), also showing potential as ZIF-forming cations. Despite the importance of nickel in catalysis, no Ni-based ZIF with permanent porosity is yet reported. It is found that the presence and arrangement of the carbonyl functional groups on the imidazole linker play a crucial role in completing the preferred octahedral coordination of nickel, revealing a promising platform for the rational design of Ni-based ZIFs for a wide range of catalytic applications. Herein, the synthesis of the first Ni-based ZIFs is reported and their high potential as heterogeneous catalysts for Suzuki–Miyaura cross-coupling C─C bond forming reactions is demonstrated.
  •  
2.
  • Tajnšek, Tia K., et al. (author)
  • Design and degradation of permanently porous vitamin C and zinc-based metal-organic framework
  • 2022
  • In: Communications Chemistry. - : Springer Science and Business Media LLC. - 2399-3669. ; 5:1
  • Journal article (peer-reviewed)abstract
    • Bioapplication is an emerging field of metal-organic frameworks (MOF) utilization, but biocompatible MOFs with permanent porosity are still a rarity in the field. In addition, biocompatibility of MOF constituents is often overlooked when designing bioMOF systems, intended for drug delivery. Herein, we present the a Zn(II) bioMOF based on vitamin C as an independent ligand (bioNICS-1) forming a three-dimensional chiral framework with permanent microporosity. Comprehensive study of structure stability in biorelavant media in static and dynamic conditions demonstrates relatively high structure resistivity, retaining a high degree of its parent specific surface area. Robustness of the 3D framework enables a slow degradation process, resulting in controllable release of bioactive components, as confirmed by kinetic studies. BioNICS-1 can thus be considered as a suitable candidate for the design of a small drug molecule delivery system, which was demonstrated by successful loading and release of urea—a model drug for topical application—within and from the MOF pores.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view