SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zaccheus Mona) "

Search: WFRF:(Zaccheus Mona)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fontana, Carolina, et al. (author)
  • Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-16000
  • 2016
  • In: Carbohydrate Research. - : Elsevier. - 0008-6215 .- 1873-426X. ; 432, s. 41-49
  • Journal article (peer-reviewed)abstract
    • The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed D-Glc, D-GalN, D-QuiN and L-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by H-1 and C-13 NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using H-1, C-13, N-15 and P-31 NMR spectroscopy; inter-residue correlations were identified by H-1, C-13-heteronuclear multiple-bond correlation, H-1, H-1-NOESY and H-1, P-31-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: -> 3)-D-Gro-(1-P-6)-beta-D-Glcp-(1 -> 4)-alpha-L-FucpNAc-(1 -> 3)-beta-D-QuipNAc-(1 -> with a side-chain consisting of alpha-D-Glcp-(1 -> 6)-alpha-D-GalpNAc-(1 -> linked to the O3 position of the FucNAc residue.
  •  
2.
  • Martínez-Gómez, Estrella, et al. (author)
  • Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Brucella abortus and Brucella melitensis
  • 2018
  • In: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 9
  • Journal article (peer-reviewed)abstract
    • Brucellosis is a bacterial zoonosis of worldwide distribution caused by bacteria of the genus Brucella. In Brucella abortus and Brucella melitensis, the major species infecting domestic ruminants, the smooth lipopolysaccharide (S-LPS) is a virulence factor. This S-LPS carries a N-formyl-perosamine homopolymer O-polysaccharide that is the major antigen in serodiagnostic tests and is required for virulence. We report that the Brucella O-PS can be structurally and antigenically modified using wbdR, the acetyl-transferase gene involved in N-acetyl-perosamine synthesis in Escherichia coli O157:H7. Brucella constructs carrying plasmidic wbdR expressed a modified O-polysaccharide but were unstable, a problem circumvented by inserting wbdR into a neutral site of chromosome II. As compared to wild-type bacteria, both kinds of wbdR constructs expressed shorter O-polysaccharides and NMR analyses showed that they contained both N-formyl and N-acetyl-perosamine. Moreover, deletion of the Brucella formyltransferase gene wbkC in wbdR constructs generated bacteria producing only N-acetyl-perosamine homopolymers, proving that wbdR can replace for wbkC. Absorption experiments with immune sera revealed that the wbdR constructs triggered antibodies to new immunogenic epitope(s) and the use of monoclonal antibodies proved that B. abortus and B. melitensis wbdR constructs respectively lacked the A or M epitopes, and the absence of the C epitope in both backgrounds. The wbdR constructs showed resistance to polycations similar to that of the wild-type strains but displayed increased sensitivity to normal serum similar to that of a per R mutant. In mice, the wbdR constructs produced chronic infections and triggered antibody responses that can be differentiated from those evoked by the wild-type strain in S-LPS ELISAs. These results open the possibilities of developing brucellosis vaccines that are both antigenically tagged and lack the diagnostic epitopes of virulent field strains, thereby solving the diagnostic interference created by current vaccines against Brucella.
  •  
3.
  • Rönnols, Jerk, et al. (author)
  • Complete H-1 and C-13 NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligosaccharides using the computer program CASPER
  • 2013
  • In: Carbohydrate Research. - : Elsevier BV. - 0008-6215 .- 1873-426X. ; 380, s. 156-166
  • Journal article (peer-reviewed)abstract
    • H-1 and C-13 NMR chemical shift data are used by the computer program CASPER to predict chemical shifts of oligo- and polysaccharides. Three types of data are used, namely, those from monosaccharides, disaccharides, and trisaccharides. To improve the accuracy of these predictions we have assigned the H-1 and C-13 NMR chemical shifts of eleven monosaccharides, eleven disaccharides, twenty trisaccharides, and one tetrasaccharide; in total 43 compounds. Five of the oligosaccharides gave two distinct sets of NMR resonances due to the alpha- and beta-anomeric forms resulting in 48 H-1 and C-13 NMR chemical shift data sets. In addition, the pyranose ring forms of Neu5Ac were assigned at two temperatures, due to chemical shift displacements as a function of temperature. The H-1 NMR chemical shifts were refined using total line-shape analysis with the PERCH NMR software. H-1 and C-13 NMR chemical shift predictions were subsequently carried out by the CASPER program (http://www.casper.organ.su.se/casper/) for three branched oligosaccharides having different functional groups at their reducing ends, namely, a mannose-containing pentasaccharide, and two fucose-containing heptasaccharides having N-acetyllactosamine residues in the backbone of their structures. Good to excellent agreement was observed between predicted and experimental H-1 and C-13 NMR chemical shifts showing the utility of the method for structural determination or confirmation of synthesized oligosaccharides.
  •  
4.
  • Zaccheus, Mona, et al. (author)
  • Conformational Dynamics of a Central Trisaccharide Fragment of the LeaLex Tumor Associated Antigen Studied by NMR Spectroscopy and Molecular Dynamics Simulations
  • 2012
  • In: European Journal of Organic Chemistry. - : Wiley. - 1434-193X .- 1099-0690. ; :25, s. 4705-4715
  • Journal article (peer-reviewed)abstract
    • Certain carbohydrate structures are recognized as cancer antigens, and identification of these and relevant epitopes are essential in fighting the disease. The trisaccharide beta-D-GlcpNAc-(1?3)-beta-D-Galp-(1?4)-beta-D-GlcpNAc-OMe represents a model for the central region of the LeaLex hexasaccharide and it has herein been investigated by 1D 1H,1H-NOESY experiments to obtain effective interresidue protonproton distances as well as by 2D J-HMBC experiments to determine transglycosidic 3JCH coupling constants. Molecular dynamics (MD) simulations using explicit water as solvent and three different carbohydrate force fields, namely, GLYCAM06, PARM22/SU01, and CHARMM2011, were employed for the interpretation of experimental data. Overall, the force field based MD simulations are able to reproduce the experimental data and the ? torsion angle at the beta-(1?3)-linkage is concluded to be flexible. In addition, different minor states were present for the three force fields with either anti-? or non-exo-anomeric conformations. Transitions between the exo-anomeric and the non-exo-anomeric conformations for the f torsion angle at the beta-(1?4)-linkage in one of the MD simulations were analyzed in detail. It was found that hydrogen-bonding water molecules, interresidue hydrogen bonds and the transitions between antiperiplanar and synperiplanar conformations for the tH torsion angle of an N-acetyl group were all essential in the description of the glycosidic transition process. In particular, the transition of tH may be a general way of regulating other transitions into less populated but biologically important conformational regions.
  •  
5.
  • Zaccheus, Mona, 1983- (author)
  • Structural and Conformational Studies of Oligo- and Polysaccharides
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • The focus of this thesis is to examine the structural properties of polysaccharides produced by bacteria, as well as the dynamic and conformational behavior of a synthetically derived oligosaccharide.The primary structures of the O-polysaccharide repeating units of four different Escherichia coli (E. coli) strains, namely O175, O177, O103 and TD2158, as well as the first report of a capsular polysaccharide produced by lactic acid bacteria Leuconostoc mesenteroides ssp. cremoris PIA2 are reported in paper I–V. Structural analyses have been performed using a combination of nuclear magnetic resonance spectroscopy and chemical component analysis.The elucidated structures in paper I–III, as well as paper V, are composed of linear repeating units of varying composition and length. In paper IV, the structure of the O-polysaccharide repeating unit of E. coli TD2158 is determined to be a branched hexasaccharide structure with a heterogeneous substitution pattern, with either a β-GlcpNAc or β-Glcp residue branching to the backbone chain. Incubation with bacteriophage HK620 tailspike protein shows that the polysaccharide is selectively cleaved at the α-GlcpNAc-(1→2)-α-Rhap-linkage of the backbone chain, yielding a 9:1 ratio of β-GlcpNAc/β-Glcp containing hexasaccharides after digestion.In paper VI the conformational properties of a trisaccharide, which constitutes an internal epitope of the LeaLex hexasaccharide over-expressed on the surface of squamous lung cancer cells, have been analyzed using NMR spectroscopy and molecular dynamics simulations. The β-(1→3)-linkage of the trisaccharide was shown to be highly flexible.
  •  
6.
  • Zaccheus, Mona V., 1983-, et al. (author)
  • Structural studies of the O‐antigen polysaccharide from Escherichia coli TD2158 having O18 serogroup specificity and aspects of its interaction with the tailspike endoglycosidase of the infecting bacteriophage HK620
  • 2012
  • In: Carbohydrate Research. - : Elsevier BV. - 0008-6215 .- 1873-426X. ; 357, s. 118-125
  • Journal article (peer-reviewed)abstract
    • We have analyzed the O-antigen polysaccharide of the previously uncharacterized Escherichia coli strain TD2158 which is a host of bacteriophage HK620. This bacteriophage recognizes and cleaves the polysaccharide with its tailspike protein (TSP). The polysaccharide preparation as well as oligosaccharides obtained from HK620TSP endoglycosidase digests were analyzed with NMR spectroscopy. Additionally, sugar analysis was performed on the O-antigen polysaccharide and MALDI-TOF MS was used in oligosaccharide analysis. The present study revealed a heterogeneous polysaccharide with a hexasaccharide repeating unit of the following structure: α-D-Glcp-(1→6|) →2)-α-L-Rhap-91→6)-α-D-Glcp-(1→4)-α-D-Ga|lp-(1→3)-α-D-GlcpNAc-(1→ β-D-Glcp/β-D-GlcpNAc-(1→3) A repeating unit with a D-GlcNAc substitution of D-Gal has been described earlier as characteristic for serogroup O18A1. Accordingly, we termed repeating units with D-Glc substitution at D-Gal as O18A2. NMR analyses of the polysaccharide confirmed that O18A1- and O18A2-type repeats were present in a 1:1 ratio. However, HK620TSP preferentially bound the D-GlcNAc-substituted O18A1-type repeating units in its high affinity binding pocket with a dissociation constant of 140 μM and disfavored the O18A2-type having a β-D-Glcp-(1→3)-linked group. As a result, in hexasaccharide preparations, O18A1 and O18A2 repeats were present in a 9:1 ratio stressing the clear preference of O18A1-type repeats to be cleaved by HK620TSP.
  •  
7.
  • Zaccheus, Mona V., et al. (author)
  • The Epitopic and Structural Characterization of Brucella suis Biovar 2 O-Polysaccharide Demonstrates the Existence of a New M-Negative C-Negative Smooth Brucella Serovar
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:1, s. e53941-
  • Journal article (peer-reviewed)abstract
    • The brucellae are Gram-negative bacteria that cause an important zoonosis. Studies with the main Brucella species have shown that the O-antigens of the Brucella smooth lipopolysaccharide are alpha-(1 -> 2) and alpha-(1 -> 3)-linked N-formyl-perosamine polysaccharides that carry M, A and C (A = M, A>M and AA) and M specificities. However, the biovar 2 O-antigen bound monoclonal antibodies to the Brucella A epitope, and to the C/Y epitope shared by brucellae and Yersinia enterocolitica O:9, a bacterium that carries an N-formyl-perosamine O-antigen in exclusively alpha-(1 -> 2)-linkages. By C-13 NMR spectroscopy, B. suis biovar 1 but not B. suis biovar 2 or Y.enterocolitica O:9 polysaccharide showed the signal characteristic of alpha-(1 -> 3)-linked N-formyl-perosamine, indicating that biovar 2 may altogether lack this linkage. Taken together, the NMR spectroscopy and monoclonal antibody analyses strongly suggest a role for alpha-(1 -> 3)-linked N-formyl-perosamine in the C (A = M) and C (M>A) epitopes. Moreover, they indicate that B. suis biovar 2 O-antigen lacks some lipopolysaccharide epitopes previously thought to be present in all smooth brucellae, thus representing a new brucella serovar that is M-negative, C-negative. Serologically and structurally this new serovar is more similar to Y. enterocolitica O:9 than to other brucellae.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view