SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zamioudis Christos) "

Search: WFRF:(Zamioudis Christos)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cruz-Ramírez, Alfredo, et al. (author)
  • A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division
  • 2012
  • In: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 150:5, s. 1002-1015
  • Journal article (peer-reviewed)abstract
    • In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOM-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.
  •  
2.
  • Zamioudis, Christos, et al. (author)
  • beta-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots
  • 2014
  • In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 204:2, s. 368-379
  • Journal article (peer-reviewed)abstract
    • Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here, we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72 and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered -glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas the bglu42 mutant was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants.
  •  
3.
  • Zamioudis, Christos, et al. (author)
  • Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses
  • 2015
  • In: The Plant Journal. - : Wiley. - 0960-7412 .- 1365-313X. ; 84:2, s. 309-322
  • Journal article (peer-reviewed)abstract
    • In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VOCs) from ISR-inducing Pseudomonas bacteria are important elicitors of MYB72. In response to VOC treatment, MYB72 is co-expressed with the iron uptake-related genes FERRIC REDUCTION OXIDASE2 (FRO2) and IRON-REGULATED TRANSPORTER1 (IRT1) in a manner that is dependent on FER-LIKE IRON DEFICIENCY TRANSCRIPTION FACTOR (FIT), indicating that MYB72 is an intrinsic part of the plant's iron-acquisition response that is typically activated upon iron starvation. However, VOC-induced MYB72 expression is activated independently of iron availability in the root vicinity. Moreover, rhizobacterial VOC-mediated induction of MYB72 requires photosynthesis-related signals, while iron deficiency in the rhizosphere activates MYB72 in the absence of shoot-derived signals. Together, these results show that the ISR- and iron acquisition-related transcription factor MYB72 in Arabidopsis roots is activated by rhizobacterial volatiles and photosynthesis-related signals, and enhances the iron-acquisition capacity of roots independently of the iron availability in the rhizosphere. This work highlights the role of MYB72 in plant processes by which root microbiota simultaneously stimulate systemic immunity and activate the iron-uptake machinery in their host plants. Significance Statement Plant roots intimately interact with plant growth-promoting rhizobacteria that prime the plant immune system and aid in iron uptake two functions facilitated by the root-specific transcription factor MYB72. Here we show how MYB72 and iron uptake responses are systemically activated by photosynthesis-related signals and volatiles produced by plant growth-promoting rhizobacteria, highlighting the important role of beneficial root microbiota in supporting plant growth and health.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view