SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zanette D) "

Search: WFRF:(Zanette D)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bo, A D, et al. (author)
  • Ethyl(hydroxyethyl)cellulose-sodium dodecanoate interaction investigated by surface tension and electrical conductivity techniques
  • 2005
  • In: Colloids and Surfaces A: Physicochemical and Engineering Aspects. - : Elsevier BV. - 0927-7757. ; 256:2-3, s. 171-180
  • Journal article (peer-reviewed)abstract
    • Mixtures of ethyl (hydroxyethyl)cellulose (EHEC) and sodium dodecanoate (SDoD) were investigated using surface tension, conductivity and transmittance measurements. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration (cac) and saturation of the polymer by SDoD (psp) were determined from the plots of surface tension and specific conductivity versus surfactant concentration. The transmittance versus [SDoD] profiles exhibited bands that, in conjunction with conductivity and surface tension data, gave support to the explanation of the behavior of EHEC-SDoD-water solutions. Transmittance bands determined in the presence of EHEC and surfactant are sensitive to the process of surfactant to polymer binding. In this process, a discontinuity point represented by a second broader peak in the transmittance plots was identified, implying a slight inhibition of the breakdown of the network process. This is explained as a kind of intermediate re-structural network of the complexes produced by the formation of regular SDoD micelles. It was demonstrated that the second conductivity breakpoint marks the polymer saturation by surfactant clusters, and the effect of the EHEC concentration on the process of binding can be described by a linear correlation when the psp breakpoint is plotted against the polymer concentration. (c) 2005 Elsevier B.V. All rights reserved.
  •  
2.
  • Westwood, S., et al. (author)
  • Plasma Protein Biomarkers for the Prediction of CSF Amyloid and Tau and F-18 -Flutemetamol PET Scan Result
  • 2018
  • In: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: Blood biomarkers may aid in recruitment to clinical trials of Alzheimer's disease (AD) modifying therapeutics by triaging potential trials participants for amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF) A beta and tau tests. Objective: To discover a plasma proteomic signature associated with CSF and PET measures of AD pathology. Methods: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics were performed in plasma from participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD, recruited to the Amsterdam Dementia Cohort, stratified by CSF Tau/A beta(42) (n = 50). Technical replication and independent validation were performed by immunoassay in plasma from SCD, MCI, and AD participants recruited to the Amsterdam Dementia Cohort with CSF measures (n = 100), MCI participants enrolled in the GE067-005 study with [F-18]-Flutemetamol PET amyloid measures (n = 173), and AD, MCI and cognitively healthy participants from the EMIF 500 study with CSF A beta(42) measurements (n = 494). Results: 25 discovery proteins were nominally associated with CSF Tau/A beta(42) (P < 0.05) with associations of ficolin-2 (FCN2), apolipoprotein C -IV and fibrinogen f, chain confirmed by immunoassay (P < 0.05). In the GE067-005 cohort, FCN2 was nominally associated with PET amyloid (P < 0.05) replicating the association with CSF Tau/A beta(42). There were nominally significant associations of complement component 3 with PET amyloid, and apolipoprotein(a), apolipoprotein A-I, ceruloplasmin, and PPY with MCI conversion to AD (all P < 0.05). In the EMIF 500 cohort FCN2 was trending toward a significant relationship with CSF A beta(42) (P approximate to 0.05), while both Al AT and clusterin were nominally significantly associated with CSF A beta(42) (both P < 0.05). Conclusion: Associations of plasma proteins with multiple measures of AD pathology and progression are demonstrated. To our knowledge this is the first study to report an association of FCN2 with AD pathology. Further testing of the proteins in larger independent cohorts will be important.
  •  
3.
  • Ikonomovic, Milos D, et al. (author)
  • Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection
  • 2016
  • In: Acta neuropathologica communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 4
  • Journal article (peer-reviewed)abstract
    • In vivo imaging of fibrillar β-amyloid deposits may assist clinical diagnosis of Alzheimer's disease (AD), aid treatment selection for patients, assist clinical trials of therapeutic drugs through subject selection, and be used as an outcome measure. A recent phase III trial of [(18)F]flutemetamol positron emission tomography (PET) imaging in 106 end-of-life subjects demonstrated the ability to identify fibrillar β-amyloid by comparing in vivo PET to post-mortem histopathology. Post-mortem analyses demonstrated a broad and continuous spectrum of β-amyloid pathology in AD and other dementing and non-dementing disease groups. The GE067-026 trial demonstrated 91% sensitivity and 90% specificity of [(18)F]flutemetamol PET by majority read for the presence of moderate or frequent plaques. The probability of an abnormal [(18)F]flutemetamol scan increased with neocortical plaque density and AD diagnosis. All dementia cases with non-AD neurodegenerative diseases and those without histopathological features of β-amyloid deposits were [(18)F]flutemetamol negative. Majority PET assessments accurately reflected the amyloid plaque burden in 90% of cases. However, ten cases demonstrated a mismatch between PET image interpretations and post-mortem findings. Although tracer retention was best associated with amyloid in neuritic plaques, amyloid in diffuse plaques and cerebral amyloid angiopathy best explain three [(18)F]flutemetamol positive cases with mismatched (sparse) neuritic plaque burden. Advanced cortical atrophy was associated with the seven false negative [(18)F]flutemetamol images. The interpretation of images from pathologically equivocal cases was associated with low reader confidence and inter-reader agreement. Our results support that amyloid in neuritic plaque burden is the primary form of β-amyloid pathology detectable with [(18)F]flutemetamol PET imaging.
  •  
4.
  • Thal, D. R., et al. (author)
  • Estimation of amyloid distribution by F-18 flutemetamol PET predicts the neuropathological phase of amyloid beta-protein deposition
  • 2018
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 136:4, s. 557-567
  • Journal article (peer-reviewed)abstract
    • The deposition of the amyloid β-protein (Aβ) in senile plaques is one of the histopathological hallmarks of Alzheimer’s disease (AD). Aβ-plaques arise first in neocortical areas and, then, expand into further brain regions in a process described by 5 phases. Since it is possible to identify amyloid pathology with radioactive-labeled tracers by positron emission tomography (PET) the question arises whether it is possible to distinguish the neuropathological Aβ-phases with amyloid PET imaging. To address this question we reassessed 97 cases of the end-of-life study cohort of the phase 3 [18F]flutemetamol trial (ClinicalTrials.gov identifiers NCT01165554, and NCT02090855) by combining the standardized uptake value ratios (SUVRs) with pons as reference region for cortical and caudate nucleus-related [18F]flutemetamol-retention. We tested them for their prediction of the neuropathological pattern found at autopsy. By defining threshold levels for cortical and caudate nucleus SUVRs we could distinguish different levels of [18F]flutemetamol uptake termed PET-Aβ phase estimates. When comparing these PET-Aβ phase estimates with the neuropathological Aβ-phases we found that PET-Aβ phase estimate 0 corresponded with Aβ-phases 0-2, 1 with Aβ-phase 3, 2 with Aβ-phase 4, and 3 with Aβ-phase 5. Classification using the PET-Aβ phase estimates predicted the correct Aβ-phase in 72.16% of the cases studied here. Bootstrap analysis was used to confirm the robustness of the estimates around this association. When allowing a range of±1 phase for a given Aβ-phase correct classification was given in 96.91% of the cases. In doing so, we provide a novel method to convert SUVR-levels into PET-Aβ phase estimates that can be easily translated into neuropathological phases of Aβ-deposition. This method allows direct conclusions about the pathological distribution of amyloid plaques (Aβ-phases) in vivo. Accordingly, this method may be ideally suited to detect early preclinical AD-patients, to follow them with disease progression, and to provide a more precise prognosis for them based on the knowledge about the underlying pathological phase of the disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view