SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhai Z) "

Search: WFRF:(Zhai Z)

  • Result 1-10 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • You, Q. L., et al. (author)
  • Recent frontiers of climate changes in East Asia at global warming of 1.5 degrees C and 2 degrees C
  • 2022
  • In: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Journal article (peer-reviewed)abstract
    • East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 degrees C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required.
  •  
7.
  • You, Q. L., et al. (author)
  • Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences
  • 2021
  • In: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 217
  • Journal article (peer-reviewed)abstract
    • Warming amplification over the Arctic Pole (AP hereafter) and Third Pole (Tibetan Plateau, TP hereafter) can trigger a series of climate responses and have global consequences. Arctic amplification (AA) and Tibetan amplification (TA) are the most significant characteristics of climate change patterns over the two Poles. In this study, trends, mechanisms and consequences of both AA and TA are compared. Based on ERA5 reanalysis during 1979-2020, both AP and TP have undergone significant warming with an annual rate of 0.72 degrees C/decade and 0.34 degrees C/decade respectively, which exceeds the rates for the Northern Hemisphere (0.29 degrees C/decade) and the global means (0.19 degrees C/decade) over the same period. Based on 22 Coupled Model Intercomparison Project Phase 6 models, AA over the AP is warming at a rate almost four times than the global means and twice as fast over the TP. Although both AA and TA are projected to continue in the future, currently there is no consensus on the dominant mechanisms for AA or TA over the two Poles. Proposed mechanisms of AA can be divided into two types: local climate factors (sea ice-albedo feedback, Planck feedback, temperature gradient feedback, cloud feedback, and water vapor feedback); and poleward heat and moisture transport from lower latitudes (atmospheric circulation effect, ocean circulation effect, and modulation of Pacific and Atlantic SST). Consequences of AA include decline of sea ice cover, retreat of the Greenland ice sheet, permafrost degradation, accelerated disturbances in marine and terrestrial ecosystems, and influences on extreme climate events at lower latitudes. Anthropogenic greenhouse gas emission, snow/ice-albedo feedback, cloud-radiation interactions, water vapor and radiative flux feedbacks, local forcing and feedback processes, land use changes and reduction in total ozone, are generally considered to be the main mechanisms causing TA. TA has caused significant change within the atmosphere and cryosphere over the TP and its surroundings, such as changes in climate extremes, snow cover, the retreat of glaciers, and permafrost degradation. Similarities and differences of warming amplifications over the two Poles are proposed, and the relative contribution of each mechanism to the warming amplifications and how the specific consequences may compare over the two Poles remain unclear and under continuing investigation.
  •  
8.
  • Yu, Y. F., et al. (author)
  • Compound climate extremes in China: Trends, causes, and projections
  • 2023
  • In: Atmospheric Research. - : Elsevier BV. - 0169-8095. ; 286
  • Journal article (peer-reviewed)abstract
    • Human society and ecosystems are impacted by climate extremes more than by climate averages. In contrast with climate extremes that are driven by individual climatic variables, compound climate extremes stem from a combination of multiple climatic drivers and usually lead to more severe risks than the former extremes do. The influences of the drivers for compound climate extremes are strengthening under global warming. Firstly, this review details the development of the definition of compound climate extremes over recent years and describes different types of events, such as compound drought and heatwave extremes (CDHEs), compound day and night heat extremes (CDNHEs), and compound flooding (CF). Secondly, historical trends in compound climate ex-tremes in China over the past half-century, and projections of future trends under different scenarios, are dis-cussed. For example, this study points out that a large part of China has experienced longer, stronger, and more frequent CDHEs than other parts of the country. CDHEs have followed a significantly increasing trend since the 1990s, and this trend is projected to strengthen further under different scenarios in the future. Thirdly, this study reviews different potential causes for compound climate extremes, including the internal variability of the climate system (e.g., land and atmosphere feedbacks, large-scale circulation patterns) and external anthropo-genic forcings (e.g., urbanization and anthropogenic emissions). In this study, we summarize risks from different perspectives by considering interactions between hazards, vulnerability, and exposure. Many studies show that risks to infrastructural damage and population exposure are projected to increase in the future, and that crop yields and ecosystem gross primary production are likely to reduce. Finally, we generalize our study and show that there is an urgent need for a comprehensive study of different combinations of compound events. We argue that it is important that we understand the key dynamic and thermal processes that are modulated by specific drivers and investigate the uncertainty in the projected variabilities for compound climate extremes. This re-quires interdisciplinary collaboration and will allow appropriate risk adaptation strategies to be developed. There has been great progress in research into compound climate extremes; however, an improved understanding of the mechanisms and risks is necessary as a theoretical basis for more effective climate adaptation policies.
  •  
9.
  • Fan, W., et al. (author)
  • Investigation of magnetization dynamics damping in Ni80Fe20/Nd-Cu bilayer at room temperature
  • 2018
  • In: AIP Advances. - : American Institute of Physics (AIP). - 2158-3226. ; 8:5
  • Journal article (peer-reviewed)abstract
    • Focusing on the Ni80Fe20 (Py)/Nd-Cu bilayers, the magnetization dynamic damping from spin pumping effect is investigated systematically by doping itinerant Cu in rear earth metal Nd. Various Ta/Py/Nd1-xCux/Ta/Si films with x = 0%, 16%, 38%, 46% and 58% are prepared by magnetron sputtering. For every content of Cu, the thickness of Nd-Cu layer is changed from 1 nm to 32 nm. The damping coefficient increases with increasing the thickness of Nd-Cu layer, which shows the trend of the spin pumping behavior. Also, with increasing Cu concentration in the Nd-Cu layer, the damping coefficient decreases, implying that the spin-orbit coupling in Nd-Cu layer is indeed cut down by high itinerant of Cu dopants. It is interesting that the spin diffusion length (λSD) in the Nd-Cu layer for different Cu dopants is not found to increase monotonously.
  •  
10.
  • Jin, Z., et al. (author)
  • Increased ecohydrological drying over terrestrial ecosystems
  • 2022
  • In: Atmospheric Research. - : Elsevier BV. - 0169-8095. ; 277
  • Journal article (peer-reviewed)abstract
    • The greening and browning of global vegetation are driven by various processes such as climate change, CO2 fertilization, and land management, etc. From the perspective of the vegetation-water-heat relationship, the above processes can be briefly summarized as two types of eco-hydrological processes: 1. dryness change; 2. usage change. We here present a diagnostic procedure to identify the dominant eco-hydrological processes, thus evaluate the climate change impacts on ecosystems. Utilizing remote-sensing based leaf area index (LAI) and climate data during 1982-2016, we demonstrate that dryness changes showed prior dominance over 1/4 global lands where LAI trends are significant. Concretely, drying/wetting has expanded/reduced its regional dominance from 8%/15.8% (1982-1999) to 18.1%/11.9% (1999-2016), indicating that dryness change has turned to more drying than wetting for global vegetated lands. As increased over twofold, drying is playing an increasingly important role in the climate change impacts on terrestrial ecosystems, bringing fundamental weakening of global greening.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view