SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhao Maojun) "

Search: WFRF:(Zhao Maojun)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Liu, Yu, et al. (author)
  • Facile synthesis of highly processable and water dispersible polypyrrole and poly(3,4-ethylenedioxythiophene) microspheres for enhanced supercapacitive performance
  • 2018
  • In: European Polymer Journal. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0014-3057 .- 1873-1945. ; 99, s. 332-339
  • Journal article (peer-reviewed)abstract
    • Much recent work has focused on improving the processibility and electrocapacitive performance of conducting polymer-based materials for energy related applications. The key mechanism of conducting polymers as supercapacitor materials is driven by the rapid charging and discharging processes that involve mass transport of the counter ions insertion/ejection within the polymer structure, where ion diffusion is usually the limiting step on the efficiency of the conducting polymer capacitor. Here, we report a facile method for the green fabrication of polypyrrole microspheres (PPy-MSs) and poly (3, 4-ethylenedioxythiophene) microspheres (PEDOT-MSs) with good processability, intact morphology and large active surface for enhanced ion interchange processes, without using surfactant and highly irritant or toxic organic solvents during the synthetic process. The structure and morphology of the PPy-MSs and PEDOT-MSs were characterized by means of SEM, EDX, TEM and FTIR. Both PPy-MSs and PEDOT-MSs showed intact microsphere structures with greatly improved water dispersity and processability. More importantly, facilated by the large active surface and inter-microsphere space for ions diffusion, both the PPy-MSs and PEDOT-MSs showed a signiciantly enhanced electrical capacitive performance of 242 F g(-1) and 91.2 F g(-1), repsectively (i.e. 10 and 1.51 times in specific capacitance than the randomly structured PPy and PEDOT). This innovative approach not only addresses fundamental issues in fabrication of high performance processable microstructured conducting polymers, but also makes progress in delivering water processable conducting polymers that could be potentially used for fabrication of printed electronic devices.
  •  
2.
  • Liu, Yu, et al. (author)
  • Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing
  • 2018
  • In: Biosensors & bioelectronics. - : ELSEVIER ADVANCED TECHNOLOGY. - 0956-5663 .- 1873-4235. ; 100, s. 374-381
  • Journal article (peer-reviewed)abstract
    • A new approach for the facile fabrication of electrochemical biosensors using a biohybrid conducting polymer was demonstrated using glucose oxidase (GOx) and poly (3, 4-ethylenedioxythiophene) (PEDOT) as a model. The biohybrid conducting polymer was prepared based on a template-assisted chemical polymerisation leading to the formation of PEDOT microspheres (PEDOT-MSs), followed by in-situ deposition of platinum nanoparticles (PtNPs) and electrostatic immobilisation of glucose oxidase (GOx) to form water processable GOx-PtNPs-PEDOT-MSs. The morphology, chemical composition and electrochemical performance of the GOx-PtNPs-PEDOT-MS-based glucose biosensor were characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared (FTIR) spectroscopy, zeta potential and electrochemical measurements, respectively. The biosensor delivered a linear response for glucose over the range 0.1-10 mM (R-2 = 0.9855) with a sensitivity of 116.25 mu A mM(-1) cm(-2), and limit of detection of 1.55 mu M (3 x SD/sensitivity). The sensitivity of the developed PEDOT-MS based biosensor is significantly higher (2.7 times) than the best reported PEDOT-based glucose biosensor in the literature. The apparent Michaelis Menten constant (K-m(app)) of the GOx-PtNPs-PEDOT-MS-based biosensors was calculated as 7.3 mM. Moreover, the biosensor exhibited good storage stability, retaining 97% of its sensitivity after 12 days storage. This new bio-hybrid conducting polymer combines the advantages of micro-structured morphology, compatibility with large-scale manufacturing processes, and intrinsic biocatalytic activity and conductivity, thus demonstrating its potential as a convenient material for printed bioelectronics and sensors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Liu, Yu (2)
Zhao, Maojun (2)
Turner, Anthony, 195 ... (1)
Turner, Anthony (1)
Mak, Wing Cheung (1)
Wing Cheung, Mak, 19 ... (1)
University
Linköping University (2)
Language
English (2)
Research subject (UKÄ/SCB)
Natural sciences (2)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view