SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhou Liping) "

Search: WFRF:(Zhou Liping)

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Chen, Rui, et al. (author)
  • Prostate Specific Antigen and Prostate Cancer in Chinese Men Undergoing Initial Prostate Biopsies Compared with Western Cohorts
  • 2017
  • In: Journal of Urology. - : Ovid Technologies (Wolters Kluwer Health). - 0022-5347 .- 1527-3792. ; 197:1, s. 90-96
  • Journal article (peer-reviewed)abstract
    • Purpose We determined the characteristics of Chinese men undergoing initial prostate biopsy and evaluated the relationship between prostate specific antigen levels and prostate cancer/high grade prostate cancer detection in a large Chinese multicenter cohort. Materials and Methods This retrospective study included 13,904 urology outpatients who had undergone biopsy for the indications of prostate specific antigen greater than 4.0 ng/ml or prostate specific antigen less than 4.0 ng/ml but with abnormal digital rectal examination results. The prostate specific antigen measurements were performed in accordance with the standard procedures at the respective institutions. The type of assay used was documented and recalibrated to the WHO standard. Results The incidence of prostate cancer and high grade prostate cancer was lower in the Chinese cohort than the Western cohorts at any given prostate specific antigen level. Around 25% of patients with a prostate specific antigen of 4.0 to 10.0 ng/ml were found to have prostate cancer compared to approximately 40% in U.S. clinical practice. Moreover, the risk curves were generally flatter than those of the Western cohorts, that is risk did not increase as rapidly with higher prostate specific antigen. Conclusions The relationship between prostate specific antigen and prostate cancer risk differs importantly between Chinese and Western populations, with an overall lower risk in the Chinese cohort. Further research should explore whether environmental or genetic differences explain these findings or whether they result from unmeasured differences in screening or benign prostate disease. Caution is required for the implementation of prostate cancer clinical decision rules or prediction models for men in China or other Asian countries with similar genetic and environmental backgrounds.
  •  
3.
  • Fischer, Hubertus, et al. (author)
  • Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond
  • 2018
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:7, s. 474-485
  • Journal article (peer-reviewed)abstract
    • Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the pre-industrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.
  •  
4.
  • Fu, Ping, 1982-, et al. (author)
  • Glacial geomorphology and paleoglaciation patterns in Shaluli Shan, the southeastern Tibetan Plateau — Evidence for polythermal ice cap glaciation
  • 2013
  • In: Geomorphology. - : Elsevier BV. - 0169-555X .- 1872-695X. ; 182, s. 66-78
  • Journal article (peer-reviewed)abstract
    • Glacial geomorphological mapping from satellite imagery and field investigations provide the basis for a reconstructionof the extent and style of glaciation of the Shaluli Shan, a mountainous area on the southeastern TibetanPlateau. Our studies provide evidence for multiple glaciations, including the formation of regional ice caps andvalley glaciers. The low-relief topographywithin the Shaluli Shan, the Haizishan Plateau, and Xinlong Plateau displayzonal distributions of glacial landforms that is similar to those imprinted by Northern Hemisphere ice sheetsduring the last glacial cycle, indicating the presence of regional, polythermal ice caps. Abundant alpine glaciallandforms occur on high mountain ranges. The pattern of glaciated valleys centered on high mountain rangesand ice-scoured low relief granite plateaus with distinctive patterns of glacial lineations indicate a strong topographiccontrol on erosional and depositional patterns by glaciers and ice caps. In contrast to the Shaluli Shan,areas farther north and west on the Tibetan Plateau have not yielded similar landform evidence for regionalice capswith complex thermal basal conditions. Such spatial differences across the Tibetan Plateau are the resultof variations in climate and topography that control the extent and style of glaciations and that reinforce the importanceof detailed geomorphological mapping for understanding paleoclimate variations and characteristics offormer glaciations.
  •  
5.
  • Fu, Ping, et al. (author)
  • Glacial geomorphology of the Haizi Shan area, SE Tibetan Plateau
  • 2009
  • Conference paper (peer-reviewed)abstract
    • The Haizi Shan area on the SE Tibetan Plateau is characterized by an elliptical relatively low relief plateau surrounded by steeper fluvial valleys. Glacial deposits and erosive imprints are widely distributed indicating former glacier expansions of varying extents in a presently ice-free area. We have initiated a project on the glacial history of the Haizi Shan area and we here present some initial mapping results. Glacial landforms have been mapped based on remote sensing (SRTM digital elevation model, Landsat ETM+ satellite imagery, and Google Earth) and one short reconnaissance field season. Well-preserved moraines from different stages and distinctive U-shaped glacial valleys are abundant (Fig. 1). In the Daocheng Valley southwest of the Haizi Shan Plateau we have mapped glacial deposits in the form of discontinued moraine ridges at Sangdui village. This line, which might be the maximum Quaternary glacial extent, can be traced for several kilometers along the western side of the valley as dispersed erratic boulders. This implies that during the maximum glaciation, ice from the Haizi Shan Plateau crossed the valley and reached up to the piedmont of the opposite mountain. Smaller in extent than the former, numerous large moraine ridges reach down towards valley floors along the edges of the Haizi Shan Plateau. In several locations these valleys lack cirque heads indicating former outlet glaciers emanating from a Haizi Shan ice cap. We will use TCN and OSL dates of samples collected from numerous ice marginal moraines of the Haizi Shan Plateau to determine a glacial chronology. Hence, using remote sensing, field investigations and numerical dating techniques for the Haizi Shan we aim to advance our knowledge on Quaternary glaciations of the SE Tibetan Plateau.
  •  
6.
  • Fu, Ping, 1982-, et al. (author)
  • Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau
  • 2013
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 64, s. 121-135
  • Journal article (peer-reviewed)abstract
    • Reconstructing the paleoglaciation of the Tibetan Plateau is critical to understanding linkages between regional climate changes and global climate changes, and here we focus on the glacial history of the Shaluli Shan, an area of the southeastern Tibetan Plateau that receives much of its precipitation from monsoon flow. Based on field investigation, geomorphological mapping, and Be-10 exposure dating of moraines, we identify glacial deposits from the Late Glacial, with minimum ages at 13.0 +/- 1.2 -17.1 +/- 1.6 ka, global Last Glacial Maximum (gLGM) at 21.6 +/- 2.0 ka, and pre-gLGM at 102.3 +/- 10.0-183.6 +/- 17.0 ka. These ages are consistent with and significantly extend the known range from most prior chronological work using terrestrial cosmogenic nuclides in this area, and include a set of dates for the Kuzhaori moraine that raise questions about prior chronologies based on the electron spin resonance technique. Ice caps about 4000 km(2) in size covered the Haizishan Plateau and the Xinlong Plateau during the global LGM, with large glaciers extending far down outlet valleys. The presence of ice cap glaciation, here, contrasts strongly to glaciation elsewhere in the Shaluli Shan and more central regions of the Tibetan Plateau where ice expansion remained constricted to valleys. This work provides important insights into the paleoclimate pattern and monsoon evolution of the Tibetan Plateau over past glacial cycles and indicates that the Shaluli Shan has a glacial chronology more consistent with the Northern Hemisphere paleo-ice sheets than other areas of the Tibetan Plateau.
  •  
7.
  • Harbor, Jon, et al. (author)
  • Glacial Geomorphology of the Haizi Shan area, SE Tibetan Plateau
  • 2010
  • Conference paper (peer-reviewed)abstract
    • The Haizi Shan area on the SE Tibetan Plateau is characterized by a relatively low relief plateau surrounded by steeper fluvial valleys. Glacial deposits and erosive imprints are widely distributed indicating former glacier expansions of varying extents in a presently ice-free area. Glacial landforms have been mapped using remote sensing (SRTM digital elevation model, Landsat ETM+ satellite imagery, and Google Earth) and field reconnaissance. Well-preserved moraines from different stages and distinctive U-shaped glacial valleys are abundant. In the Daocheng Valley southwest of the Haizi Shan Plateau we have mapped glacial deposits which likely reflect the maximum Quaternary glacial extent for several kilometers along the western side of the valley. During the maximum glaciation, we infer that ice from the Haizi Shan Plateau crossed the valley and extended in to tributary valleys. Numerous large moraine ridges also reach down towards valley floors along the edges of the Haizi Shan Plateau. In several locations these valleys lack cirque heads indicating former outlet glaciers emanating from a Haizi Shan ice cap. In ongoing work we are using TCN and OSL to determine a glacial chronology for this area and advance our knowledge of Quaternary glaciations of the SE Tibetan Plateau.
  •  
8.
  • Heyman, Jakob, 1979-, et al. (author)
  • A paleoglaciological reconstruction for Bayan Har Shan, NE Tibetan Plateau
  • 2009
  • Conference paper (peer-reviewed)abstract
    • The paleoglaciology of the Tibetan Plateau has remained elusive because extensive areas still lack detailed scrutiny. We here present a paleoglaciological reconstruction for the Bayan Har Shan region, NE Tibetan Plateau, which could serve as a working model to investigate other poorly investigated regions. The reconstruction is primarily based on three methods for revealing the glacial history; 1) remote sensing (geomorphology), 2) field studies (stratigraphy), and 3) numerical dating techniques. Remote sensing (SRTM elevation data, Landsat ETM+ satellite imagery and Google Earth) of a 136 500 km2 area reveals an abundance of glacial landforms in the highest mountain areas and an absence of glacial landforms on intervening plateau surfaces. Stratigraphical data collected during three field seasons supplement the picture emerging from remote sensing. Glacial deposits (including erratic boulders and till) occur in the elevated mountain areas but are absent on the intervening plateau areas. Marginal moraines in central Bayan Har can be grouped to represent at least three separate glacial extents and scattered observations of glacial deposits indicate the presence of a fourth (and maximum) glacial extent. To tie the glacial geological record to a chronology we have employed terrestrial cosmogenic nuclide (TCN) exposure and optically stimulated luminescence (OSL) dating. Beryllium apparent exposure ages of 65 glacial boulders, surface cobbles/pebbles and depth profile samples yield minimum ages for the three youngest glacial extents of 40-65 ka, 60-100 ka, and 95-165 ka (with the wide age ranges due to TCN dating uncertainties). A preliminary OSL age of c. 160 ka from glacial sediments of the oldest of these glacial extents supports our interpretation based on TCN dating. The glacial extent presented here is more restricted than most previous reconstructions, most notably with very restricted glaciers over at least the last 40-65 ka. These results indicate that while continental-scale ice sheets evolved and disappeared in North America and Eurasia over the last half of the last glacial cycle, the NE corner of the Tibetan Plateau experienced relatively minor glacial fluctuations.
  •  
9.
  • Heyman, Jakob, 1979-, et al. (author)
  • An evaluation of multiple working hypotheses to explain cosmogenic exposure age data from glacial deposits in the Bayan Har Shan, NE Tibetan Plateau
  • 2009
  • In: Proceedings.
  • Conference paper (peer-reviewed)abstract
    • Many questions remain unanswered regarding the Quaternary glaciations of the Tibetan Plateau. We have used terrestrial cosmogenic nuclide (TCN) exposure age dating of glacial deposits to examine the style, extent, and timing of past glaciations of the Bayan Har Shan, a mountain region on the northeastern Tibetan Plateau. This area lies within a transition zone between the dry interior of the Tibetan Plateau and the wetter eastern margin affected by the Asian monsoon. Bayan Har Shan has many glacial landforms and deposits that provide evidence for former glaciation ranging from cirque and valley glaciers to ice-fields and ice caps.In an attempt to constrain the timing of glaciations in Bayan Har Shan, we have performed TCN exposure dating on 65 samples in central Bayan Har Shan from glacial deposits. boulders (39 samples), on surface pebbles/cobbles (12 samples), and on pebbles in sediment depth profiles (14 samples from four profiles) allow us to examine the timing and extent of glaciations in this area. As is often the case, there are some challenges in interpreting the range of TCN apparent exposure ages that is found in data from several samples and sample types on a single deposit and from samples taken at various sites. Thus we evaluate multiple working hypotheses to explain apparent exposure ages on glacial deposits, which in this case range from 3 ka to 129 ka. We consider three different hypotheses; 1) some samples have erroneously old exposure ages due to inheritance, 2) samples have been preserved under cold-based, non-erosive ice, and 3) samples have experienced only post-glacial shielding. Only when we adopt a hypothesis that assumes no prior exposure, and thus that maximum apparent exposure ages constrain the minimum age of formation of a feature (working hypotheses 3), do we find broad consistency between apparent exposure ages from different sample types (erratic boulders, surface pebbles/cobbles and pebbles from depth profiles). This leads to the conclusion that all of the sites of former glaciations we examined are at least 50ka in age, and that there has been no large-scale expansion of glaciers in the central Bayan Har Shan over the last 50ka.
  •  
10.
  • Heyman, Jakob, 1979-, et al. (author)
  • Constraining the glacial chronology of Bayan Har Shan, NE Tibetan Plateau – Cosmogenic exposure dating of boulders, surface pebbles/cobbles and sediment depth profiles
  • 2009
  • In: Geophysical Research Abstracts.
  • Conference paper (peer-reviewed)abstract
    • The paleoglaciology of the Tibetan Plateau remains elusive, with important hiata regarding the style, extent, and timing of glaciations. Bayan Har Shan is a mountain region on the northeastern Tibetan Plateau, in a transition zone from the dry interior of the plateau in the west to the wetter eastern margin affected by the Asian monsoon. Bayan Har Shan hosts an ample record of glacial landforms and deposits indicating paleo-glaciers ranging from cirque and valley glaciers to ice-fields and ice caps. These glaciers, it has been suggested, also nourished a regional ice sheet. In an attempt to constrain the timing of glaciations in Bayan Har Shan, we have performed terrestrial cosmogenic nuclide (TCN) exposure dating on surface boulders and pebbles/cobbles from glacial deposits, and on pebbles in sediment depth profiles. The aim has been two-fold: to constrain the glacial chronology and to compare and evaluate the TCN ages of the three different TCN sample types. We present the result of 67 Be-10 measurements from 15 sites in central Bayan Har Shan (40 boulder samples, 12 surface pebbles/cobbles samples and 15 depth profile samples from four depth profiles). The obtained TCN apparent exposure ages of boulders and surface pebbles/cobbles range from 3 ka to 145 ka with wide age spreads within groups of samples collected from one glacial deposit. Our TCN results of three different sample types (boulders, surface pebbles/cobbles and depth profile pebbles) from the northeastern Tibetan Plateau form an intriguing data set that may yield different age estimates with different interpretation strategies. However, they permit the following conclusions to be advanced: • Pebbles/cobbles ages are broadly in agreement with boulder ages. • Three depth profiles yield exponential curves for Be-10 concentrations with depth, in agreement with theoretical TCN depth profiles; ages are in broad agreement with boulder and surface pebbles/cobbles samples. • Maximum ages (adopting an approach where the maximum ages constrain the minimum age of formation) of multiple sample sites are all c. 50 ka or older. This is underlined by the maximum ages around 50 ka from three moraines formed by glaciers just a few kilometres long, indicating that there has been no significant glaciation of central Bayan Har Shan over the last 50 ka.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23
Type of publication
journal article (11)
conference paper (10)
other publication (2)
Type of content
peer-reviewed (21)
other academic/artistic (2)
Author/Editor
Alexanderson, Helena (12)
Liu, Feng (2)
Lilja, Hans (1)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
show more...
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Abram, Nerilie J. (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Colombaroli, Daniele (1)
Fischer, Hubertus (1)
Sjolte, Jesper (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Zhou, Bo (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Gaillard, Marie-Jose (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Zhao, Jing (1)
Li, You (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Parchi, Piero (1)
Chen, Rui (1)
show less...
University
Stockholm University (18)
Lund University (5)
Uppsala University (2)
University of Gothenburg (1)
Halmstad University (1)
Chalmers University of Technology (1)
show more...
Linnaeus University (1)
Karolinska Institutet (1)
show less...
Language
English (22)
Undefined language (1)
Research subject (UKÄ/SCB)
Natural sciences (14)
Medical and Health Sciences (2)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view