SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhou Rusen) "

Search: WFRF:(Zhou Rusen)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Piao, Xinyue, et al. (author)
  • Inulin for surimi gel fortification : Performance and molecular weight-dependent effects
  • 2023
  • In: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 305
  • Journal article (peer-reviewed)abstract
    • Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of alpha-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water -holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.
  •  
2.
  • Zhao, Yadong, 1985-, et al. (author)
  • Fabrication of multidimensional bio-nanomaterials from nanocellulose oxalate
  • 2023
  • In: Cellulose. - : Springer Nature. - 0969-0239 .- 1572-882X. ; 30:4, s. 2147-2163
  • Journal article (peer-reviewed)abstract
    • Nanocelluloses and cellulose nanomaterials derived from natural resources are a group of ideal platform materials for advanced applications. However, their synthesis through sustainable and facile processes to achieve the required properties are still challenging. Here, we prepare the nanocellulose oxalate (n-COX) from cotton with outstanding physicochemical properties by defining the optimal oxalic acid pretreatment conditions. Thus-obtained n-COX with unique 1D nanofiber shape as a platform material is further processed to various high-performance multidimensional bio-nanomaterials through several simple yet effective strategies. First, 2D n-COX films prepared through a casting-drying method show comparable or even better transparency and tensile strength than those made from other types of nanocelluloses. Second, 3D n-COX hydrogels/aerogels fabricated by a molding-crosslinking approach demonstrate good shape stability, well-preserved nanoporous networks, and qualified mechanical properties. Third, n-COX-derived bioinks display improved printability and fidelity, resulting in better size-preserving and shape-control of the 3D-bioprinted scaffolds. We expect this work could offer new insights on engineering natural cellulose and using n-COX as a platform material for further advanced fabrication, and thus, open up application potentials of this new nanocellulose.
  •  
3.
  • Li, Jingwen, et al. (author)
  • Emerging Food Packaging Applications of Cellulose Nanocomposites : A Review
  • 2022
  • In: Polymers. - : MDPI AG. - 2073-4360. ; 14:19
  • Research review (peer-reviewed)abstract
    • Cellulose is the most abundant biopolymer on Earth, which is synthesized by plants, bacteria, and animals, with source-dependent properties. Cellulose containing beta-1,4-linked D-glucoses further assembles into hierarchical structures in microfibrils, which can be processed to nanocellulose with length or width in the nanoscale after a variety of pretreatments including enzymatic hydrolysis, TEMPO-oxidation, and carboxymethylation. Nanocellulose can be mainly categorized into cellulose nanocrystal (CNC) produced by acid hydrolysis, cellulose nanofibrils (CNF) prepared by refining, homogenization, microfluidization, sonification, ball milling, and the aqueous counter collision (ACC) method, and bacterial cellulose (BC) biosynthesized by the Acetobacter species. Due to nontoxicity, good biodegradability and biocompatibility, high aspect ratio, low thermal expansion coefficient, excellent mechanical strength, and unique optical properties, nanocellulose is utilized to develop various cellulose nanocomposites through solution casting, Layer-by-Layer (LBL) assembly, extrusion, coating, gel-forming, spray drying, electrostatic spinning, adsorption, nanoemulsion, and other techniques, and has been widely used as food packaging material with excellent barrier and mechanical properties, antibacterial activity, and stimuli-responsive performance to improve the food quality and shelf life. Under the driving force of the increasing green food packaging market, nanocellulose production has gradually developed from lab-scale to pilot- or even industrial-scale, mainly in Europe, Africa, and Asia, though developing cost-effective preparation techniques and precisely tuning the physicochemical properties are key to the commercialization. We expect this review to summarise the recent literature in the nanocellulose-based food packaging field and provide the readers with the state-of-the-art of this research area.
  •  
4.
  • Li, Jingwen, et al. (author)
  • Nisin electroadsorption-enabled multifunctional bacterial cellulose membranes for highly efficient removal of organic and microbial pollutants in water
  • 2022
  • In: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 440, s. 135922-
  • Journal article (peer-reviewed)abstract
    • Membranes fabricated from bacteria-produced cellulose have many practical and technological advantages over other means of cellulose fiber production, however, their functionality for targeted applications is limited and requires complex, multi-stage processing, while the mechanisms underpinned the optimum improvements remain largely unknown. Focusing on one of the highest-demand applications in wastewater treatment, here we resolve the three persistent issues in bacterial cellulose membranes (BCMs), namely poor fibrillar network quality, insufficient functionality and unsatisfactory performance, and discover the counterintuitive, yet most effective mechanism of imparting the multifunctional properties. First, innovative application of the Hestrin-Shramm medium instead of the CM0986 medium stimulated Taonella mepensis to produce BCMs with higher yields, more uniform fibrils and developed fibrillar networks, higher crystallinity indexes, better mechanical and thermal properties. Second, a novel but facile electroadsorption method was developed to enhance BCM functionality via bonding a natural bactericidal peptide-Nisin to the deliberately activated terminals on the BCM surface, achieving great antibacterial activity, good durability, well-preserved nanoporous network, outstanding water retention and low toxicity. Third, due to the synergetic effects of surface adsorption, ionic bonding, physical retention and active microbial killing, the Nisin-decorated BCMs enabled outstanding organic dye removal and excellent disinfection performance, among the best in the available reports. Collectively, this study demonstrates that electroadsorption is a promising and potentially generic strategy to fabricate Nisin-decorated and functionalized BCMs for next-generation membrane filters toward water purification.
  •  
5.
  • Zhao, Yadong, 1985-, et al. (author)
  • Cellulose nanofibrils-stabilized food-grade Pickering emulsions : Clarifying surface charge's contribution and advancing stabilization mechanism understanding
  • 2024
  • In: Food Hydrocolloids. - : Elsevier BV. - 0268-005X .- 1873-7137. ; 152
  • Journal article (peer-reviewed)abstract
    • Pickering emulsions stabilized by cellulose nanofibrils (CN) have sparked significant attention, however the fundamental mechanisms underpinning the stabilization process remain insufficiently elucidated. Focusing on an academic debate of surface charge's contribution to stabilization, this study first explored how the varying carboxyl group contents of TEMPO-oxidized CN (TCNs) impacted Pickering emulsions' formation and stability. TCNs with 662 μmol/g carboxyl groups exhibited distinctive attributes, including larger particle sizes (322 nm in length), improved thermal stability (maximum decomposition temperature of 317 °C), and increased viscosity (1.57 Paִִ⋅s) compared to their counterparts with 963–1011 μmol/g charge density. Notably, the former one, with a larger three-phase contact angle (51.5°), higher interfacial tension, and greater detachment energy (21.69 × 10−18 J), resulted in a homogeneous dispersion of spherical oil droplets and super-stable Pickering emulsions with a consistent emulsifying index of 100% over 30 days. These findings clearly clarified that TCNs with a lower charge density exhibit superior emulsifying properties. In addition, for the first time, a distinct oil droplet-decorated fibrillar structure was observed, probably suggesting that TCNs might be able to serve as anchoring matrixes to guide the distribution of oil droplets. These structures seemed to impeded the migration and accumulation of the oil droplets, consequently enhancing the stability of the resulting Pickering emulsions. To sum, this study clearly elucidated the role of surface charge in stabilizing cellulose-based Pickering emulsions and proposed a new model to expound the cellulose-oil interaction mechanisms, thus providing new theoretical and practical insights on utilization of CN as highly effective emulsifier for super-stable food-grade Pickering emulsions.
  •  
6.
  • Zhao, Yadong, 1985-, et al. (author)
  • Collagens for surimi gel fortification : Type-dependent effects and the difference between type I and type II
  • 2023
  • In: Food Chemistry. - : Elsevier BV. - 0308-8146 .- 1873-7072. ; 407, s. 135157-
  • Journal article (peer-reviewed)abstract
    • Surimi products have unsatisfactory gel properties. Hence, this study evaluates the effect of collagen-adding on surimi gel properties and provides the first observation results regarding collagen type influence. With higher water solubility and more charged amino acids than type II, collagen type I intertwines with surimi myofibrillar proteins better to induce higher exposure of protein functional domains, more sufficient conformational changes of myosin and greater formation of chemical forces among proteins. These enhancements accelerate the gelation rate, leading to a well-stabilized surimi gel. The collagen I-containing surimi gels show more compact structures with uniformly distributed smaller pores than those containing collagen II, thereby providing the final products with higher water holding capacity and better textural profiles. As such, the surimi gel fortification performance of collagen I and the well-elucidated collagen-myofibrillar protein interaction mechanism will guide the further exploitation of collagen as an effective additive in the food industry.
  •  
7.
  • Zhao, Yadong, 1985-, et al. (author)
  • Enhancement of myofibrillar protein gelation by plant proteins for improved surimi gel characteristics: Mechanisms and performance
  • 2024
  • In: Lebensmittel-Wissenschaft + Technologie. - : Elsevier BV. - 0023-6438 .- 1096-1127. ; 198
  • Journal article (peer-reviewed)abstract
    • Three commonly used plant proteins, soy isolate protein (SPI), wheat gluten (WG) and pea protein (PP), were incorporated into surimi gels, and their effects on myofibrillar protein gelation and resultant surimi gel properties have been investigated. Results revealed that addition of any of these plant proteins at 5 g/100 g surimi enhanced the surimi gelation, among which SPI addition resulted in smoother, denser and whiter surimi gels (whiteness of 61.49) with superior textural attributes (hardness of 1994 g), water-holding capacity (85.67%) and structural integrity. Such improvements were attributed to the uniform distribution of SPI solution between adjacent surimi protein molecules, not only aiding in maintaining the matrix's continuity but bridging the interaction between the proteins. SPI with a higher content of charged amino acids (47.17%) exhibited a better ability to interact with the charged N- and C- terminals of surimi proteins. This interaction promoted the complete unfolding of surimi proteins, facilitated the conversion of α-helix to β structures, exposing hydrophobic ends and sulfhydryl groups, and consequently enhanced the formation of hydrophobic interactions and disulfide bonds during gelation. This study demonstrated that plant proteins, especially SPI, are effective gel-reinforcing additives in surimi gels, offering insights for developing plant protein-rich surimi products.
  •  
8.
  • Zhao, Yadong, 1985-, et al. (author)
  • Enhancement of surimi gel properties through the synergetic effect of fucoidan and oligochitosan
  • 2023
  • In: Food Hydrocolloids. - : Elsevier BV. - 0268-005X .- 1873-7137. ; 140
  • Journal article (peer-reviewed)abstract
    • For the first time, two common marine-derived dietary fibres (MDFs), fucoidan (FU) and oligochitosan (OCS), were introduced as textural and nutritional enhancers in hairtail surimi gels. The MDFs could assist with inhabiting the endogenous proteolytic enzyme activity, unfolding the myosin to expose more reactive domains, inducing favorable protein conformational transition, and thus, promoting gelation. The highly hydrophilic MDFs rich in -OH groups can bind water molecules via strong hydrogen bonds, facilitating water redistribution within the gel network. Driven by the enhanced chemical forces, a stable protein-FU-OCS gel is obtained, which improves the hardness by almost 100% and the water holding capacity from 86.25% to 92.25%. Collectively, this study demonstrates that MDFs are a group of effective additives to improve gel characteristics and nutritional profiles of surimi-based seafood products. The proposed MDF-protein interaction model would guide the application of MDFs as novel additives in the food industry.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view