SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zirakashvili V. N.) "

Search: WFRF:(Zirakashvili V. N.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Topchiev, N. P., et al. (author)
  • GAMMA-400 gamma-ray observatory
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons+ positrons.Precision investigations of gamma-ray emission fromGalactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well asdiffuse gamma-rayemission,along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will studygamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1° to ∼0.01° and energy resolution from 3% to ∼1%; the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboardthe Russian space observatory.
  •  
2.
  • Adriani, O., et al. (author)
  • The gamma-400 space observatory : Status and perspectives
  • 2014
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ∼100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee. 
  •  
3.
  • Topchiev, N. P., et al. (author)
  • The GAMMA-400 experiment : Status and prospects
  • 2015
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 417-420
  • Journal article (peer-reviewed)abstract
    • The development of the GAMMA-400 γ-ray telescope continues. The GAMMA-400 is designed to measure fluxes of γ-rays and the electron-positron cosmic-ray component possibly associated with annihilation or decay of dark matter particles; and to search for and study in detail discrete γ-ray sources, to measure the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-rays from the active Sun. The energy range for measuring γ-rays and electrons (positrons) is from 100 MeV to 3000 GeV. For 100-GeV γ-rays, the γ-ray telescope has an angular resolution of ∼0.01°, an energy resolution of ∼1%, and a proton rejection factor of ∼5 × 105. The GAMMA-400 will be installed onboard the Russian Space Observatory.
  •  
4.
  • Leonov, A. A., et al. (author)
  • Separation of electrons and protons in the GAMMA-400 gamma-ray telescope
  • 2015
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 56:7, s. 1538-1545
  • Journal article (peer-reviewed)abstract
    • The GAMMA-400 telescope will measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. These measurements will allow it to achieve the following scientific objectives: search for signatures of dark matter, investigation of gamma-ray point-like and extended sources, study of the energy spectrum of the Galactic and extragalactic diffuse emission, study of gamma-ray bursts and gamma-ray emission from the active Sun, together with high-precision measurements of the high-energy electrons and positrons spectra, protons and nuclei up to the knee. The bulk of cosmic rays are protons and helium nuclei, whereas the lepton component in the total flux is similar to 10(-3) at high energy. In the present paper, the simulated capability of the GAMMA-400 telescope to distinguish electrons and positrons from protons in cosmic rays is addressed. The individual contribution to the proton rejection from each detector system of GAMMA-400 is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of the order of similar to 4 x 10(5) for vertical incident particles and similar to 3 x 10(5) for particles with initial inclination of 30 degrees in the electron energy range from 50 GeV to 1 TeV. (C) 2015 COSPAR.
  •  
5.
  • Stevanovic, D., et al. (author)
  • Measurement invariance of the Childhood Autism Rating Scale (CARS) across six countries
  • 2021
  • In: Autism Research. - : Wiley. - 1939-3792 .- 1939-3806. ; 14:12, s. 2544-2554
  • Journal article (peer-reviewed)abstract
    • The Childhood Autism Rating Scale (CARS) is a simple and inexpensive tool for Autism spectrum disorder (ASD) assessments, with evidenced psychometric data from different countries. However, it is still unclear whether ASD symptoms are measured the same way across different societies and world regions with this tool, since data on its cross-cultural validity are lacking. This study evaluated the cross-cultural measurement invariance of the CARS among children with ASD from six countries, for whom data were aggregated from previous studies in India (n = 101), Jamaica (n = 139), Mexico (n = 72), Spain (n = 99), Turkey (n = 150), and the United States of America (n = 186). We analyzed the approximate measurement invariance based on Bayesian structural equation modeling. The model did not fit the data and its measurement invariance did not hold, with all items found non-invariant across the countries. Items related to social communication and interaction (i.e., relating to people, imitation, emotional response, and verbal and nonverbal communication) displayed lower levels of cross-country non-invariance compared to items about stereotyped behaviors/sensory sensitivity (i.e., body and object use, adaptation to change, or taste, smell, and touch response). This study found that the CARS may not provide cross-culturally valid ASD assessments. Thus, cross-cultural comparisons with the CARS should consider first which items operate differently across samples of interest, since its cross-cultural measurement non-invariance could be a source of cross-cultural variability in ASD presentations. Additional studies are needed before drawing valid recommendations in relation to the cultural sensitivity of particular items.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view