SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zuo Guangzheng) "

Search: WFRF:(Zuo Guangzheng)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abdalla, Hassan, et al. (author)
  • Range and energetics of charge hopping in organic semiconductors
  • 2017
  • In: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 96:24
  • Journal article (peer-reviewed)abstract
    • The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the materials initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.
  •  
2.
  • Li, Yaohui, et al. (author)
  • An n-n Heterojunction Configuration for Efficient Electron Transport in Organic Photovoltaic Devices
  • 2023
  • In: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 33:9
  • Journal article (peer-reviewed)abstract
    • Selective electron transport and extraction are essential to the operation of photovoltaic devices. Electron transport layer (ETL) is therefore critical to organic photovoltaics (OPV). Herein, an ETL configuration is presented comprising a solution-processed n-n organic heterojunction to enhance electron transport and hole blocking, and boost power conversion efficiency (PCE) in OPV. Specifically, the n-n heterojunction is constructed by stacking a narrow-band n-type conjugated polymer layer (PNDIT-F3N) and a wide-band n-type conjugated molecule layer (Phen-NaDPO). Based on the ultraviolet photoelectron spectroscopy measurement and numerical simulation of current density-voltage characteristics, the formation of the built-in potential is investigated. In three OPVs with different active layers, substantial improvements are observed in performance following the introduction of this ETL configuration. The performance enhancement arises from the combination of selective carrier transport properties and reduced recombination. Another contributing factor is the good film-forming quality of the new ETL configuration, where the surface energies of the related materials are well-matched. The n-n organic heterojunction represents a viable and promising ETL construction strategy for efficient OPV devices.
  •  
3.
  • Perdigon-Toro, Lorena, et al. (author)
  • Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell
  • 2020
  • In: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32
  • Journal article (peer-reviewed)abstract
    • Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.
  •  
4.
  • Wanzhu, Cai, et al. (author)
  • Dedoping-induced interfacial instability of poly(ethylene imine)s-treated PEDOT:PSS as a low-work-function electrode
  • 2020
  • In: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 8:1, s. 328-336
  • Journal article (peer-reviewed)abstract
    • Transparent organic electrodes printed from high-conductivity PEDOT:PSS have become essential for upscaling all-carbon based, low-cost optoelectronic devices. In the printing process, low-work-function PEDOT:PSS electrodes (cathode) are achieved by coating an ultra-thin, non-conjugated polyelectrolyte that is rich in amine groups, such as poly(ethylene imine) (PEI) or its ethoxylated derivative (PEIE), onto PEDOT:PSS surfaces. Here, we mapped the physical and chemical processes that occur at the interface between thin PEIx (indicating either PEI or PEIE) and PEDOT:PSS during printing. We identify that there is a dedoping effect of PEDOT induced by the PEIx. Using infrared spectroscopy, we found that the amine-rich PEIx can form chemical bonds with the dopant, PSS. At lower PSS concentration, PEIx also shows an electron-transfer effect to the charged PEDOT chain. These interface reactions lock the surface morphology of PEDOT:PSS, preventing the redistribution of PSS, and reduce the work function. Subsequent exposure to oxygen during the device fabrication process, on the other hand, can result in redoping of the low-work-function PEDOT:PSS interface, causing problems for printing reproducible devices under ambient conditions.
  •  
5.
  • Zapata-Arteaga, Osnat, et al. (author)
  • Design Rules for Polymer Blends with High Thermoelectric Performance
  • 2022
  • In: Advanced Energy Materials. - : Wiley-V C H Verlag GMBH. - 1614-6832 .- 1614-6840. ; 12:19
  • Journal article (peer-reviewed)abstract
    • A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined.
  •  
6.
  • Zuo, Guangzheng, et al. (author)
  • Conjugated Polymer Blends for Organic Thermoelectrics
  • 2019
  • In: Advanced Electronic Materials. - : WILEY. - 2199-160X. ; 5:11
  • Journal article (peer-reviewed)abstract
    • A major attraction of organic conjugated semiconductors is that materials with new, emergent functionality can be designed and made by simple blending, as is extensively used in, e.g., bulk heterojunction organic solar cells. Herein doped blends based on organic semiconductors (OSCs) for thermoelectric applications are critically reviewed. Several experimental strategies to improve thermoelectric performance, measured in terms of power factor (PF) or figure-of-merit ZT, have been demonstrated in recent literature. Specifically, density-of-states design in blends of two OSCs can be used to obtain electronic Seebeck coefficients up to approximate to 2000 mu V K-1. Alternatively, blending with (high-dielectric constant) insulating polymers can improve doping efficiency and thereby conductivity, as well as induce more favorable morphologies that improve conductivity while hardly affecting thermopower. In the PEDOT:polystyrene-sulfonate (PEDOT:PSS) blend system, processing schemes to either improve conductivity via morphology or via (partial) removal of the electronically isolating PSS, or both, have been demonstrated. Although a range of experiments have at least quasi-quantitatively been explained by analytical or numerical models, a comprehensive model for organic thermoelectrics is lacking so far.
  •  
7.
  • Zuo, Guangzheng, 1985- (author)
  • Doping and Density of States Engineering for Organic Thermoelectrics
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Thermoelectric materials can turn temperature differences directly into electricity. To use this to harvest e.g. waste heat with an efficiency that approaches the Carnot efficiency requires a figure of merit ZT larger than 1. Compared with their inorganic counterparts, organic thermoelectrics (OTE) have numerous advantages, such as low cost, large-area compatibility, flexibility, material abundance and an inherently low thermal conductivity. Therefore, organic thermoelectrics are considered by many to be a promising candidate material system to be used in lower cost and higher efficiency thermoelectric energy conversion, despite record ZT values for OTE currently lying around 0.25.A complete organic thermoelectric generator (TEG) normally needs both p-type and n-type materials to form its electric circuit. Molecular doping is an effective way to achieve p- and ntype materials using different dopants, and it is necessary to fundamentally understand the doping mechanism. We developed a simple yet quantitative analytical model and compare it with numerical kinetic Monte Carlo simulations to reveal the nature of the doping effect. The results show the formation of a deep tail in the Gaussian density of states (DOS) resulting from the Coulomb potentials of ionized dopants. It is this deep trap tail that negatively influences the charge carrier mobility with increasing doping concentration. The trends in mobilities and conductivities observed from experiments are in good agreement with the modeling results, for a large range of materials and doping concentrations.Having a high power factor PF is necessary for efficient TEG. We demonstrate that the doping method can heavily impact the thermoelectric properties of OTE. In comparison to conventional bulk doping, sequential doping can achieve higher conductivity by preserving the morphology, such that the power factor can improve over 100 times. To achieve TEG with high output power, not only a high PF is needed, but also having a significant active layer thickness is very important. We demonstrate a simple way to fabricate multi-layer devices by sequential doping without significantly sacrificing PF.In addition to the application discussed above, harvesting large amounts of heat at maximum efficiency, organic thermoelectrics may also find use in low-power applications like autonomous sensors where voltage is more important than power. A large output voltage requires a high Seebeck coefficient. We demonstrate that density of states (DOS) engineering is an effective tool to increase the Seebeck coefficient by tailoring the positions of the Fermi energy and the transport energy in n- and p-type doped blends of conjugated polymers and small molecules.In general, morphology heavily impacts the performance of organic electronic devices based on mixtures of two (or more) materials, and organic thermoelectrics are no exception. We experimentally find that the charge and energy transport is distinctly different in well-mixed and phase separated morphologies, which we interpreted in terms of a variable range hopping model. The experimentally observed trends in conductivity and Seebeck coefficient are reproduced by kinetic Monte Carlo simulations in which the morphology is accounted for.  
  •  
8.
  • Zuo, Guangzheng, et al. (author)
  • General rule for the energy of water-induced traps in organic semiconductors
  • 2019
  • In: Nature Materials. - : NATURE PUBLISHING GROUP. - 1476-1122 .- 1476-4660. ; 18:6, s. 588-
  • Journal article (peer-reviewed)abstract
    • Charge carrier traps are generally highly detrimental for the performance of semiconductor devices. Unlike the situation for inorganic semiconductors, detailed knowledge about the characteristics and causes of traps in organic semiconductors is still very limited. Here, we accurately determine hole and electron trap energies for a wide range of organic semiconductors in thin-film form. We find that electron and hole trap energies follow a similar empirical rule and lie similar to 0.3-0.4 eV above the highest occupied molecular orbital and below the lowest unoccupied molecular orbital, respectively. Combining experimental and theoretical methods, the origin of the traps is shown to be a dielectric effect of water penetrating nanovoids in the organic semiconductor thin film. We also propose a solvent-annealing method to remove water-related traps from the materials investigated, irrespective of their energy levels. These findings represent a step towards the realization of trap-free organic semiconductor thin films.
  •  
9.
  • Zuo, Guangzheng, 1985-, et al. (author)
  • High Seebeck Coefficient and Power Factor in n-Type Organic Thermoelectrics
  • 2018
  • In: Advanced Electronic Materials. - : Wiley. - 2199-160X .- 2199-160X. ; 4:1
  • Journal article (peer-reviewed)abstract
    • The n-type thermoelectric properties of [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) are investigated for different solution-based doping methods. A novel inverse-sequential doping method where the semiconductor (PCBM) is deposited on a previously cast dopant 4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-N,N-diphenylaniline film to achieve a very high power factor PF ≈ 35 µW m −1 K −2 with a conductivity σ ≈ 40 S m −1 is introduced. It is also shown that n-type organic semiconductors obey the −1/4 power law relation between Seebeck coefficient S and σ that are previously found for p-type materials. An analytical model on basis of variable range hopping unifies these results. The power law for n-type materials is shifted toward higher conductivities by two orders of magnitude with respect to that of p-type, suggesting strongly that n-type organic semiconductors can eventually become superior to their p-type counterparts. Adding a small fraction lower lowest unoccupied molecular orbital material (core-cyanated naphthalene diimide) into PCBM leads to a higher S for inverse-sequential doping but not for bulk doping due to different morphologies.
  •  
10.
  • Zuo, Guangzheng, 1985-, et al. (author)
  • High Seebeck Coefficient in Mixtures of Conjugated Polymers
  • 2018
  • In: Advanced Functional Materials. - : Wiley-Blackwell. - 1616-301X .- 1616-3028. ; 28:15
  • Journal article (peer-reviewed)abstract
    • A universal method to obtain record?high electronic Seebeck coefficients is demonstrated while preserving reasonable conductivities in doped blends of organic semiconductors through rational design of the density of states (DOSs). A polymer semiconductor with a shallow highest occupied molecular orbital (HOMO) level?poly(3?hexylthiophene) (P3HT) is mixed with materials with a deeper HOMO (PTB7, TQ1) to form binary blends of the type P3HTx:B1?x (0 ≤ x ≤ 1) that is p?type doped by F4TCNQ. For B = PTB7, a Seebeck coefficient S = 1100 µV K?1 with conductivity σ = 0.3 S m?1 at x = 0.10 is achieved, while for B = TQ1, S = 2000 µV K?1 and σ = 0.03 S m?1 at x = 0.05 is found. Kinetic Monte Carlo simulations with parameters based on experiments show good agreement with the experimental results, confirming the intended mechanism. The simulations are used to derive a design rule for parameter tuning. These results can become relevant for low?power, low?cost applications like (providing power to) autonomous sensors, in which a high Seebeck coefficient translates directly to a proportionally reduced number of legs in the thermogenerator, and hence in reduced fabrication cost and complexity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view