SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(da Silva Aresta Belo P. C.) "

Search: WFRF:(da Silva Aresta Belo P. C.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Maddison, G. P., et al. (author)
  • Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET
  • 2014
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:7, s. 073016-
  • Journal article (peer-reviewed)abstract
    • The former all-carbon wall on JET has been replaced with beryllium in the main torus and tungsten in the divertor to mimic the surface materials envisaged for ITER. Comparisons are presented between type I H-mode characteristics in each design by examining respective scans over deuterium fuelling and impurity seeding, required to ameliorate exhaust loads both in JET at full capability and in ITER. Attention is focused upon a common high-triangularity, single-null divertor configuration at 2.5 MA, q(95) approximate to 3.5 yielding the most robust all-C performance. Contrasting results between the alternative linings are found firstly in unseeded plasmas, for which purity is improved and intrinsic radiation reduced in the ITER-like wall (ILW) but normalized energy confinement is approximate to 30% lower than in all-C counterparts, owing to a commensurately lower (electron) pedestal temperature. Divertor recycling is also radically altered, with slower, inboard-outboard asymmetric transients at ELMs and spontaneous oscillations in between them. Secondly, nitrogen seeding elicits opposite responses in the ILW to all-C experience, tending to raise plasma density, reduce ELM frequency, and above all to recover (electron) pedestal pressure, hence global confinement, almost back to previous levels. A hitherto unrecognized role of light impurities in pedestal stability and dynamics is consequently suggested. Thirdly, while heat loads on the divertor outboard target between ELMs are successfully reduced in proportion to the radiative cooling and ELM frequency effects of N in both wall environments, more surprisingly, average power ejected by ELMs also declines in the same proportion for the ILW. Detachment between transients is simultaneously promoted. Finally, inter-ELM W sources in the ILW divertor tend to fall with N input, although core accumulation possibly due to increased particle confinement still leads to significantly less steady conditions than in all-C plasmas. This limitation of ILW H-modes so far will be readdressed in future campaigns to continue progress towards a fully integrated scenario suitable for D-T experiments on JET and for 'baseline' operation on ITER. The diverse changes in behaviour between all-C and ILW contexts demonstrate essentially the strong impact which boundary conditions and intrinsic impurities can have on tokamak-plasma states.
  •  
2.
  • Romanelli, M., et al. (author)
  • JINTRAC: A system of codes for integrated simulation of Tokamak scenarios
  • 2014
  • In: Plasma and Fusion Research. - : Japan Society of Plasma Science and Nuclear Fusion Research. - 1880-6821. ; 9:SPECIALISSUE.2
  • Journal article (peer-reviewed)abstract
    • Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding. © 2014 The Japan Society of Plasma Science and Nuclear Fusion Research.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view