SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de Carvalho Danila Morais) "

Search: WFRF:(de Carvalho Danila Morais)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Carvalho, Danila Morais, et al. (author)
  • Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw
  • 2016
  • In: Energy Conversion and Management. - : Elsevier. - 0196-8904 .- 1879-2227. ; 124, s. 315-324
  • Journal article (peer-reviewed)abstract
    • Optimal conditions for the cold alkaline extraction (CAE) pretreatment of eucalyptus, sugarcane bagasse and sugarcane straw are proposed in view of their subsequent bioconversion into ethanol through the semi -simultaneous saccharification and fermentation (SSSF) process (with presaccharification followed by simultaneous saccharification and fermentation, or SSF). The optimum conditions, which are identified based on an experiment with a factorial central composite design, resulted in the removal of 46%, 52% and 61% of the xylan and 15%, 37% and 45% of the lignin for eucalyptus, bagasse and straw, respectively. The formation of pseudo-extractives was observed during the CAE of eucalyptus. Despite the similar glucose concentration and yield for all biomasses after 12 h of presaccharification, the highest yield (0.065 g(ethanol)/g(biomass)), concentrations (5.74 g L-1) and volumetric productivity for ethanol (0.57 g L-1 h(-1)) were observed for the sugarcane straw. This finding was most likely related to the improved accessibility of cellulose that resulted from the removal of the largest amount of xylan and lignin.
  •  
2.
  • de Carvalho, Danila Morais, et al. (author)
  • Hydrothermal and Acid Pretreatments Improve Ethanol Production from Lignocellulosic Biomasses
  • 2017
  • In: BioResources. - : NORTH CAROLINA STATE UNIV DEPT WOOD & PAPER SCI. - 1930-2126. ; 12:2, s. 3088-3107
  • Journal article (peer-reviewed)abstract
    • Hydrothermal and acid pretreatments using different acid charges (1.5%, 3.0%, and 4.5% H2SO4) were proposed for eucalyptus, sugarcane bagasse, and sugarcane straw prior to their bioconversion into ethanol using the semi-simultaneous saccharification and fermentation (SSSF) process. The hydrothermal and acid pretreatments were efficient for hemicelluloses removal from eucalyptus (63 to 96%), bagasse (25 to 98%), and straw (23 to 95%) and to remove a substantial amount of lignin from eucalyptus (10 to 34%) and bagasse (10 to 27%). During pretreatments, pseudo-extractives and pseudo-lignin were generated from biomasses. The SSSF was performed in pretreated biomasses using 24 h presaccharification followed by an additional 10 h of simultaneous saccharification and fermentation (SSF). With hydrothermal pretreatment, the eucalyptus presented the highest ethanol production, but only low values for SSSF parameters were obtained, as follows: ethanol yield (0.017 g(ethanol)/g(biomass)), volumetric productivity of ethanol (0.16 g L-1 h(-1)), and ethanol concentration (1.6 g L-1). On the other hand, using acid pretreatment, the straw (pretreated using 4.5% H2SO4) presented the highest ethanol production among the biomasses, assessed based on ethanol yield (0.056 g(ethanol)/g(biomass)), volumetric productivity of ethanol (0.51 g L-1 h(-1)), and ethanol concentration (5.1 g L-1).
  •  
3.
  • de Souza, Gustavo B., et al. (author)
  • Enhancement of eucalypt pulp yield through extended impregnation cooking
  • 2018
  • In: Nordic Pulp & Paper Research Journal. - : AB SVENSK PAPPERSTIDNING. - 0283-2631 .- 2000-0669. ; 33:2, s. 175-185
  • Journal article (peer-reviewed)abstract
    • The improvement caused by eucalypt chip impregnation on kraft pulping performance was assessed for terminating the cook at kappa in the range of 15-27 and at controlled residual effective alkali (REA) of 6-8 g/L NaOH. Extended impregnation cooking of eucalypt chips (EIC) increased about 10/0 lignin- and HexA-free screen yield gains in relation to conventional cooking (CC), regardless of kappa number in the range of 15-27. The EIC technology allows for cooking eucalypt wood to kappa number up to 27, without rejects production, but without significant improvement in lignin- and HexA-free screen yield and with larger chlorine dioxide (ClO2) consume during bleaching. The optimum kappa number for both CC and EIC cooking was about 19 with similar refinability and strength properties for both technologies, CC and EIC. It was concluded that extended impregnation cooking is an attractive technique for enhancing bleached eucalypt Kraft pulp yield.
  •  
4.
  • Arzami, Anis N., et al. (author)
  • Narrow-leafed lupin (Lupinus angustifolius L.) : Characterization of emulsification and fibre properties
  • 2022
  • In: FUTURE FOODS. - : Elsevier BV. - 2666-8335. ; 6
  • Journal article (peer-reviewed)abstract
    • Lupin is among the most promising plant-based food protein sources due to its high protein and fibre content. The fibre fraction, especially from seed coats, is often seen as low in value (discarded as waste or as animal feed) and greater knowledge on its composition and structure are crucial to increase its usefulness. However, only one model of lupin fibre structure exists in the literature. Our sample of Finnish-grown narrow-leafed lupin seed consisted of fibre (43.3%), protein (31.3%), fat (8.1%) and starch (0.2%). According to the sugar analysis, rhamnogalacturonan-I, with branches of arabinan and galactan, constituted the main pectin population in the fibre fraction. A revised model of the overall fibre structure is proposed. At concentrations of 0.75% and 1.0%, both unrefined and defatted flour of whole lupin seeds produced stable suspensions and oil-in-water emulsions, demonstrating their application as potential emulsifiers. This study presents the knowledge and opportunity to support sustainability through the utilization of whole lupin seed for future industrial applications.
  •  
5.
  • Berglund, Jennie, et al. (author)
  • Acetylation and Sugar Composition Influence the (In)Solubility of Plant beta-Mannans and Their Interaction with Cellulose Surfaces
  • 2020
  • In: ACS Sustainable Chemistry and Engineering. - : AMER CHEMICAL SOC. - 2168-0485. ; 8:27, s. 10027-10040
  • Journal article (peer-reviewed)abstract
    • Plant beta-mannans are complex heteropolysaccharides that represent an abundant resource from lignocellulosic biomass. The influence of the molecular motifs of plant mannans on the backbone flexibility, solubility, and the interaction with cellulose was investigated by computational and experimental approaches. The regioselectivity of the acetyl substitutions at C2 and C3 distinctively influenced backbone flexibility in aqueous media, as revealed by molecular dynamic simulations. The molecular weight and degree of acetylation were tailored for two model seed mannans (galactomannan and glucomannan) and compared to spruce acetylated galactoglucomannan. The thermal stability was enhanced with increasing acetyl substitutions, independently of the type of mannan. Dynamic light scattering and atomic force microscopy revealed that the occurrence of galactosylation and a low degree of acetylation (similar to that of native acetylated galactoglucomannans) enhanced solubility/dispersibility of mannans, whereas the solubility/dispersibility decreased for higher degrees of acetylation. Mannan solubility influenced their interactions with cellulose at water-cellulose interfaces in terms of adsorbed mass and viscoelastic properties of the adsorbed mannan layers. Our results reveal that modulating the molecular motifs of plant beta-mannans influences their macromolecular conformation and physicochemical properties, with fundamental implications for their role in the plant cell wall and the design of wood-based materials.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • de Carvalho, Danila Morais, et al. (author)
  • Comparative Study of Acid Hydrolysis of Lignin and Polysaccharides in Biomasses
  • 2017
  • In: BioResources. - : North Carolina State University. - 1930-2126. ; 12:4, s. 6907-6923
  • Journal article (peer-reviewed)abstract
    • Effects of different acid hydrolysis conditions were studied relative to the chemical transformations of lignin in eucalyptus, sugarcane bagasse, and sugarcane straw, and on the transformations of multiple polysaccharides in eucalyptus. The acid hydrolysis using 12 mol/L sulfuric acid followed by acid hydrolysis using approximately 0.41 mol/L sulfuric acid was used as the reference for the lignin and sugar analysis. During acid hydrolysis, the relative amount of lignin increased with longer reaction times and/or greater acid concentrations for all biomasses. The overestimation of lignin in harsher acidic conditions resulted from the summation of lignocellulosic-derivatives (pseudo- lignin) together with lignin itself. Lignin reactions (dissolution/deposition) for bagasse and straw occurred in a greater extent than for eucalyptus, considering similar conditions of acid hydrolysis. The sugar transformation during acid hydrolysis was also investigated for eucalyptus. The sugar content quantified in eucalyptus decreased as the acid concentration and/or reaction time in the second hydrolysis increased. Glucose, galactose, and mannose were more resistant to harsher acidic conditions than xylose and arabinose. However, the most severe conditions (121 degrees C, 90 min, and 6.15 mol/L H2SO4) caused complete sugar degradation.
  •  
10.
  • de Carvalho, Danila Morais, et al. (author)
  • Enrichment and Identification of Lignin-Carbohydrate Complexes in Softwood Extract
  • 2020
  • In: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 8:31, s. 11795-11804
  • Journal article (peer-reviewed)abstract
    • Lignin-carbohydrate complexes (LCCs) are hybrid structures containing covalently linked moieties of lignin and carbohydrates. The structure and behavior of LCCs affect both industrial processes and practical applications of lignocellulosic biomass. However, the identification of phenylglycoside, benzylether, and gamma (gamma)-ester LCC bonds in lignocellulosic biomass is limited due to their relatively low abundance compared to plain carbohydrate and lignin structures. Herein, we enriched the LCC bonds in softwood galactoglucomannan (GGM)-rich extract fractionated by (1) a solvent (ethanol), (2) enzymes, and (3) physical techniques. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy analysis was used to identify the LCC bonds. Phenylglycoside and benzylether bonds were concentrated in the ethanol-soluble GGM fractions. A benzylether bond was concentrated into GGM fractions containing larger molecules (>500 Da) through physical techniques. The gamma-ester bond was identified in all studied GGM fractions, which is explained by its stability and possible presence in residual xylan. In summary, we demonstrated the potential of the suggested techniques to enrich LCC bonds in softwood extract and improve LCC identification. Such techniques may also enable further studies on the structure and functionality of LCC bonds and open new prospects in the engineering of biomolecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view