SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Jesus Beleno Saenz Kelvin) "

Sökning: WFRF:(de Jesus Beleno Saenz Kelvin)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brebu, Mihai, et al. (författare)
  • Putative volatile biomarkers of bovine tuberculosis infection in breath, skin and feces of cattle
  • 2023
  • Ingår i: Molecular and Cellular Biochemistry. - : Springer. - 0300-8177 .- 1573-4919. ; 478:11, s. 2473-2480
  • Tidskriftsartikel (refereegranskat)abstract
    • Bovine tuberculosis (bTB) is an infectious disease with significant impact on animal health, public health and international trade. Standard bTB screening in live cattle consists in injecting tuberculin and measuring the swelling at the place of injection few days later. This procedure is expensive, time-consuming, logistically challenging, and is not conclusive before performing confirmatory tests and additional analysis. The analysis of the volatile organic compounds (VOCs) emitted by non-invasive biological samples can provide an alternative diagnostic approach suitable for bTB screening. In the present study, we analyzed VOC samples emitted through the breath, feces and skin of 18 cows diagnosed with bTB from three farms from Romania, as well as of 27 negative cows for bTB from the same farms. Analytical studies employing gas chromatography coupled to mass spectrometry revealed 80 VOCs emitted through the breath, 200 VOCs released by feces, and 80 VOCs emitted through the skin. Statistical analysis of these compounds allowed the identification of 3 tentative breath VOC biomarkers (acetone; 4-methyldecane; D-limonene), 9 tentative feces VOC biomarkers (toluene; [(1,1-dimethylethyl)thio]acetic acid; alpha-thujene; camphene; phenol; o-cymene; 3-(1,1-dimethylethyl)-2,2,4,4-tetramethyl-3-pentanol; 2,5-dimethylhexane-2,5-dihydroperoxide; 2,4-di-tert-butylphenol), and 3 tentative skin VOC biomarkers (ammonia; 1-methoxy-2-propanol; toluene). The possible pathway of these volatile biomarkers is discussed.
  •  
2.
  • de Jesus Beleno-Saenz, Kelvin, et al. (författare)
  • Non-Invasive Method to Detect Infection with Mycobacterium tuberculosis Complex in Wild Boar by Measurement of Volatile Organic Compounds Obtained from Feces with an Electronic Nose System
  • 2021
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 21:2
  • Tidskriftsartikel (refereegranskat)abstract
    • More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Donana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12-24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.
  •  
3.
  • Durán-Acevedo, Cristhian Manuel, et al. (författare)
  • Exhaled breath analysis for gastric cancer diagnosis in Colombian patients.
  • 2018
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 9:48, s. 28805-28817
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here the first study that directly correlates gastric cancer (GC) with specific biomarkers in the exhaled breath composition on a South American population, which registers one of the highest global incidence rates of gastric affections. Moreover, we demonstrate a novel solid state sensor that predicts correct GC diagnosis with 97% accuracy. Alveolar breath samples of 30 volunteers (patients diagnosed with gastric cancer and a controls group formed of patients diagnosed with other gastric diseases) were collected and analyzed by gas-chromatography/mass-spectrometry (GC-MS) and with an innovative chemical gas sensor based on gold nanoparticles (AuNP) functionalized with octadecylamine ligands. Our GC-MS analyses identified 6 volatile organic compounds that showed statistically significant differences between the cancer patients and the controls group. These compounds were different from those identified in previous studied performed on other populations with high incidence rates of this malady, such as China (representative for Eastern Asia region) and Latvia (representative for Baltic States), attributable to lifestyle, alimentation and genetics differences. A classification model based on principal component analysis of our sensor data responses to the breath samples yielded 97% accuracy, 100% sensitivity and 93% specificity. Our results suggest a new and non-intrusive methodology for early diagnosis of gastric cancer that may be deployed in regions lacking well-developed health care systems as a prediagnosis test for selecting the patients that should undergo deeper investigations (e.g., endoscopy and biopsy).
  •  
4.
  • Nol, Pauline, et al. (författare)
  • Evaluation of Volatile Organic Compounds Obtained from Breath and Feces to Detect Mycobacterium tuberculosis Complex in Wild Boar (Sus scrofa) in Donana National Park, Spain
  • 2020
  • Ingår i: Pathogens. - : MDPI AG. - 2076-0817. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of Mycobacterium tuberculosis complex (MTBC) in wild swine, such as in wild boar (Sus scrofa) in Eurasia, is cause for serious concern. Development of accurate, efficient, and noninvasive methods to detect MTBC in wild swine would be highly beneficial to surveillance and disease management efforts in affected populations. Here, we describe the first report of identification of volatile organic compounds (VOC) obtained from the breath and feces of wild boar to distinguish between MTBC-positive and MTBC-negative boar. We analyzed breath and fecal VOC collected from 15 MTBC-positive and 18 MTBC-negative wild boar in Donana National Park in Southeast Spain. Analyses were divided into three age classes, namely, adults (>2 years), sub-adults (12-24 months), and juveniles (<12 months). We identified significant compounds by applying the two-tailed statistical t-test for two samples assuming unequal variance, with an alpha value of 0.05. One statistically significant VOC was identified in breath samples from adult wild boar and 14 were identified in breath samples from juvenile wild boar. One statistically significant VOC was identified in fecal samples collected from sub-adult wild boar and three were identified in fecal samples from juvenile wild boar. In addition, discriminant function analysis (DFA) was used to build classification models for MTBC prediction in juvenile animals. Using DFA, we were able to distinguish between MTBC-positive juvenile wild boar and MTBC-negative juvenile wild boar using breath VOC or fecal VOC. Based on our results, further research is warranted and should be performed using larger sample sizes, as well as wild boar from various geographic locations, to verify these compounds as biomarkers for MTBC infection in this species. This new approach to detect MTBC infection in free-ranging wild boar potentially comprises a reliable and efficient screening tool for surveillance in animal populations.
  •  
5.
  • Saidi, Tarik, et al. (författare)
  • Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS
  • 2020
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 311
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy