SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de Melo Michaela L.) "

Search: WFRF:(de Melo Michaela L.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Almeida, Rafael M., et al. (author)
  • High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir
  • 2016
  • In: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 7
  • Journal article (peer-reviewed)abstract
    • Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (Co-2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 +/- 934 mg C m(-2) d(-1)), net heterotrophy was prevalent due to high ecosystem respiration (5209 +/- 992 mg C m(-2) d(-1)). Consequently, the reservoir was a source of atmospheric CO2 (518 +/- 182 mg C m(-2) d(-1)). In addition, the reservoir was a source of ebullitive (17 +/- 10 mg C m(-2) d(-1)) and diffusive CH4 (11 +/- 6 mg C m(-2) d(-1)). OC sedimentation was high (1162 mg C m(-2) d(-1)), but our results suggest that the majority of it is mineralized to CO2 (722 +/- 182 mg C m(-2) d(-1)) rather than buried as OC (440 mg C m(-2) d(-1)). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.
  •  
2.
  • de Melo, Michaela L, et al. (author)
  • Flood pulse regulation of bacterioplankton community composition in an Amazonian floodplain lake
  • 2019
  • In: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 64:1, s. 108-120
  • Journal article (peer-reviewed)abstract
    • Understanding spatial and temporal dynamics of microbial communities is a central challenge in microbial ecology since microorganisms play a key role in ecosystem functioning and biogeochemical cycles. Amazonian aquatic systems comprise a dynamic mosaic of heterogeneous habits but are understudied and there is limited information about the mechanisms that shape bacterial community composition (BCC). There is a consensus that environmental selection (species sorting) and dispersal processes (source?sink dynamics) act in concert to shape the composition of these communities, but the relative importance of each mechanism may vary dramatically through time and between systems. Applying 16S rRNA gene amplicon high-throughput sequencing, we studied factors and processes that modulate BCC in an Amazonian floodplain lake and used source-tracking models to trace the main dispersal sources of microorganisms in the whole floodplain system during a full hydrological cycle. Our source-tracking models indicated that dispersal processes were predominant, explaining most of the BCC variability throughout the study period. We observed more sources contributing to the sink community during the falling water than rising water period, when contributions from the Solim?es River dominated. There was a clear seasonal pattern in BCC, closely related to environmental variables, suggesting that the successful establishment of dispersing bacteria also depends on environmental filtering that is linked to water flow. In summary, source?sink dynamics and species sorting were strongly affected by water exchange and connectivity with the main river that varied throughout the flood pulse cycle. Our results demonstrated the influence of lateral transport and temporal dynamics on BCC in Amazonian floodplain lakes that could ultimately impact regional carbon budgets and biogeochemical cycles.
  •  
3.
  • de Melo, Michaela L., et al. (author)
  • Linking dissolved organic matter composition and bacterioplankton communities in an Amazon floodplain system
  • 2020
  • In: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 65:1, s. 63-76
  • Journal article (peer-reviewed)abstract
    • Dissolved organic matter (DOM) is the main substrate for aquatic prokaryotes, fuelling their metabolism and controlling community composition. Amazonian rivers transport and process large fluxes of terrestrial DOM, but little is known about the link between DOM composition and heterotrophic bacteria in the Amazon basin. The aims of this study were to characterize DOM composition and investigate the coupling between DOM and bacterial community composition (BCC) during a complete hydrological cycle in an Amazon floodplain system (lake Janauacá). Our study revealed a clear seasonal pattern in DOM composition through the flood pulse, which affected the amounts of autochthonous and allochthonous inputs and consequently the extent of humification, molecular weight, and aromaticity of the DOM. BCC was tightly coupled to DOM fluorescence, which was also driven by differences over the hydrological cycle, with distinct components and operational taxonomic units being simultaneously more abundant and correlating with a specific season. This coupling was particularly well reflected for three of the four identified fluorescence components, two terrestrial humic-like components (C1 and C3) and an autochthonous component (C4). Despite clear changes in DOM composition, dissolved organic carbon concentrations tended to be relatively stable throughout the year. Overall, our results suggest that BCC shifts were associated with DOM quality but not with its quantity (that remains relatively constant throughout the year), and that bacteria preferably use labile and freshly produced DOM in lake Janauacá.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view