SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de Oliveira Kelin Gonçalves) "

Search: WFRF:(de Oliveira Kelin Gonçalves)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Oliveira, Kelin Gonçalves, et al. (author)
  • Decoding of the surfaceome and endocytome in primary glioblastoma cells identifies potential target antigens in the hypoxic tumor niche
  • 2024
  • In: Acta Neuropathologica Communications. - : BioMed Central (BMC). - 2051-5960. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Immunotherapies with antibody-drug-conjugates (ADC) and CAR-T cells, targeted at tumor surface antigens (surfaceome), currently revolutionize clinical oncology. However, target identification warrants a better understanding of the surfaceome and how it is modulated by the tumor microenvironment. Here, we decode the surfaceome and endocytome and its remodeling by hypoxic stress in glioblastoma (GBM), the most common and aggressive brain tumor in adults. We employed a comprehensive approach for global and dynamic profiling of the surfaceome and endocytosed (endocytome) proteins and their regulation by hypoxia in patient-derived GBM cultures. We found a heterogeneous surface-endocytome profile and a divergent response to hypoxia across GBM cultures. We provide a quantitative ranking of more than 600 surface resident and endocytosed proteins, and their regulation by hypoxia, serving as a resource to the cancer research community. As proof-of-concept, the established target antigen CD44 was identified as a commonly and abundantly expressed surface protein with high endocytic activity. Among hypoxia induced proteins, we reveal CXADR, CD47, CD81, BSG, and FXYD6 as potential targets of the stressed GBM niche. We could validate these findings by immunofluorescence analyses in patient tumors and by increased expression in the hypoxic core of GBM spheroids. Selected candidates were finally confronted by treatment studies, showing their high capacity for internalization and ADC delivery. Importantly, we highlight the limited correlation between transcriptomics and proteomics, emphasizing the critical role of membrane protein enrichment strategies and quantitative mass spectrometry. Our findings provide a comprehensive understanding of the surface-endocytome and its remodeling by hypoxia in GBM as a resource for exploration of targets for immunotherapeutic approaches in GBM.
  •  
2.
  • Gezelius, Emelie, et al. (author)
  • Circulating Levels of the Cardiovascular Biomarkers ST2 and Adrenomedullin Predict Outcome within a Randomized Phase III Lung Cancer Trial (RASTEN)
  • 2022
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 14:5
  • Journal article (peer-reviewed)abstract
    • Simple Summary Cardiovascular disease is common in patients with small cell lung cancer, partly reflecting its high correlation with smoking. Cardiovascular comorbidities may limit patient tolerance to cytotoxic drugs, thereby influencing the choice and intensity of treatment and, ultimately, patient survival. In light of the challenges relating to assessing cardiovascular status clinically in newly diagnosed lung cancer, objective biomarkers of cardiovascular vulnerability are warranted. Here, we show that circulating levels of ST2, an established biomarker in heart failure, and adrenomedullin, a vasodilator peptide known to reflect several aspects of cardiovascular status, strongly correlate with survival in small cell lung cancer. Our data, which are based on a large, randomized trial cohort, suggest the potential use of cardiovascular biomarkers in guiding clinicians in making individualized treatment decisions. Cardiovascular comorbidity is common in small cell lung cancer (SCLC) and may significantly affect treatment tolerability and patient outcome. Still, there are no established biomarkers for objective and dynamic assessment as a tool for improved treatment decisions. We have investigated circulating levels of midregional-pro-adrenomedullin (MR-proADM), midregional-pro-atrial-natriuretic peptide (MR-proANP), copeptin (surrogate for vasopressin) and suppression-of-tumorigenicity-2 (ST2), all known to correlate with various aspects of cardiovascular function, in a SCLC cohort (N = 252) from a randomized, controlled trial (RASTEN). For all measured biomarkers, protein levels were inversely associated with survival, particularly with ST2 and MR-proADM, where the top versus bottom quartile was associated with an adjusted hazard ratio of 2.40 (95% CI 1.44-3.98; p = 0.001) and 2.18 (95% CI 1.35-3.51; p = 0.001), respectively, in the entire cohort, and 3.43 (95% CI 1.73-6.79; p < 0.001) and 3.49 (95% CI 1.84-6.60; p < 0.001), respectively, in extensive disease patients. A high combined score of MR-proADM and ST2 was associated with a significantly reduced median OS of 7.0 months vs. 14.9 months for patients with a low combined score. We conclude that the cardiovascular biomarkers MR-proADM and ST2 strongly correlate with survival in SCLC, warranting prospective studies on the clinical utility of MR-proADM and ST2 for improved, individualized treatment decisions.
  •  
3.
  •  
4.
  • Governa, Valeria, et al. (author)
  • Landscape of surfaceome and endocytome in human glioma is divergent and depends on cellular spatial organization
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:9
  • Journal article (peer-reviewed)abstract
    • Therapeutic strategies directed at the tumor surfaceome (TS), including checkpoint inhibitor blocking antibodies, antibody drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cells, provide a new armament to fight cancer. However, a remaining bottleneck is the lack of strategies to comprehensively interrogate patient tumors for potential TS targets. Here, we have developed a platform (tumor surfaceome mapping [TS-MAP]) integrated with a newly curated TS classifier (SURFME) that allows profiling of primary 3D cultures and intact patient glioma tumors with preserved tissue architecture. Moreover, TS-MAP specifically identifies proteins capable of endocytosis as tractable targets for ADCs and other modalities requiring toxic payload internalization. In high-grade gliomas that remain among the most aggressive forms of cancer, we show that cellular spatial organization (2D vs. 3D) fundamentally transforms the surfaceome and endocytome (e.g., integrins, proteoglycans, semaphorins, and cancer stem cell markers) with general implications for target screening approaches, as exemplified by an ADC targeting EGFR. The TS-MAP platform was further applied to profile the surfaceome and endocytome landscape in a cohort of freshly resected gliomas. We found a highly diverse TS repertoire between patient tumors, not directly associated with grade and histology, which highlights the need for individualized approaches. Our data provide additional layers of understanding fundamental to the future development of immunotherapy strategies, as well as procedures for proteomics-based target identification and selection. The TS-MAP platform should be widely applicable in efforts aiming at a better understanding of how to harness the TS for personalized immunotherapy.
  •  
5.
  • Indira Chandran, Vineesh, et al. (author)
  • Global extracellular vesicle proteomic signature defines U87-MG glioma cell hypoxic status with potential implications for non-invasive diagnostics
  • 2019
  • In: Journal of Neuro-Oncology. - : SPRINGER. - 0167-594X .- 1573-7373. ; 144:3, s. 477-488
  • Journal article (peer-reviewed)abstract
    • Purpose Glioblastoma multiforme (GBM) is the most common and lethal of primary malignant brain tumors. Hypoxia constitutes a major determining factor for the poor prognosis of high-grade glioma patients, and is known to contribute to the development of treatment resistance. Therefore, new strategies to comprehensively profile and monitor the hypoxic status of gliomas are of high clinical relevance. Here, we have explored how the proteome of secreted extracellular vesicles (EVs) at the global level may reflect hypoxic glioma cells. Methods We have employed shotgun proteomics and label free quantification to profile EVs isolated from human high-grade glioma U87-MG cells cultured at normoxia or hypoxia. Parallel reaction monitoring was used to quantify the identified, hypoxia-associated EV proteins. To determine the potential biological significance of hypoxia-associated proteins, the cumulative Z score of identified EV proteins was compared with GBM subtypes from HGCC and TCGA databases. Results In total, 2928 proteins were identified in EVs, out of which 1654 proteins overlapped with the ExoCarta EV-specific database. We found 1034 proteins in EVs that were unique to the hypoxic status of U87-MG cells. We subsequently identified an EV protein signature, "HYPSIGNATURE", encompassing nine proteins that strongly represented the hypoxic situation and exhibited close proximity to the mesenchymal GBM subtype. Conclusions We propose, for the first time, an EV protein signature that could comprehensively reflect the hypoxic status of high-grade glioma cells. The presented data provide proof-of-concept for targeted proteomic profiling of glioma derived EVs, which should motivate future studies exploring its utility in non-invasive diagnosis and monitoring of brain tumor patients.
  •  
6.
  • Offer, Svenja, et al. (author)
  • Extracellular lipid loading augments hypoxic paracrine signaling and promotes glioma angiogenesis and macrophage infiltration
  • 2019
  • In: Journal of Experimental & Clinical Cancer Research. - : Springer Science and Business Media LLC. - 1756-9966. ; 38
  • Journal article (peer-reviewed)abstract
    • BackgroundPrimary brain tumors, in particular glioblastoma (GBM), remain among the most challenging cancers. Like most malignant tumors, GBM is characterized by hypoxic stress that triggers paracrine, adaptive responses, such as angiogenesis and macrophage recruitment, rescuing cancer cells from metabolic catastrophe and conventional oncological treatments. The unmet need of strategies to efficiently target tumor “stressness” represents a strong clinical motivation to better understand the underlying mechanisms of stress adaptation. Here, we have investigated how lipid loading may be involved in the paracrine crosstalk between cancer cells and the stromal compartment of the hypoxic tumor microenvironment.MethodsRegions from patient GBM tumors with or without the lipid loaded phenotype were isolated by laser capture microdissection and subjected to comparative gene expression analysis in parallel with cultured GBM cells with or without lipid loading. The potential involvement of extracellular lipids in the paracrine crosstalk with stromal cells was studied by immunoprofiling of the secretome and functional studies in vitro as well as in various orthotopic GBM mouse models, including hyperlipidemic ApoE−/− mice. Statistical analyses of quantitative experimental methodologies were performed using unpaired Student’s T test. For survival analyses of mouse experiments, log-rank test was used, whereas Kaplan-Meier was performed to analyze patient survival.ResultsWe show that the lipid loaded niche of GBM patient tumors exhibits an amplified hypoxic response and that the acquisition of extracellular lipids by GBM cells can reinforce paracrine activation of stromal cells and immune cells. At the functional level, we show that lipid loading augments the secretion of e.g. VEGF and HGF, and may potentiate the cross-activation of endothelial cells and macrophages. In line with these data, in vivo studies suggest that combined local tumor lipid loading and systemic hyperlipidemia of ApoE−/− mice receiving a high fat diet induces tumor vascularization and macrophage recruitment, and was shown to significantly decrease animal survival.ConclusionsTogether, these data identify extracellular lipid loading as a potentially targetable modulator of the paracrine adaptive response in the hypoxic tumor niche and suggest the contribution of the distinct lipid loaded phenotype in shaping the glioma microenvironment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view