SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Weerd Hendrik Arnold) "

Sökning: WFRF:(de Weerd Hendrik Arnold)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borgmästars, Emmy, et al. (författare)
  • miRFA : an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer
  • 2019
  • Ingår i: BMC Bioinformatics. - : BioMed Central. - 1471-2105. ; 20:1, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: MicroRNAs (miRNAs) are small RNAs that regulate gene expression at a post-transcriptional level and are emerging as potentially important biomarkers for various disease states, including pancreatic cancer. In silico-based functional analysis of miRNAs usually consists of miRNA target prediction and functional enrichment analysis of miRNA targets. Since miRNA target prediction methods generate a large number of false positive target genes, further validation to narrow down interesting candidate miRNA targets is needed. One commonly used method correlates miRNA and mRNA expression to assess the regulatory effect of a particular miRNA. The aim of this study was to build a bioinformatics pipeline in R for miRNA functional analysis including correlation analyses between miRNA expression levels and its targets on mRNA and protein expression levels available from the cancer genome atlas (TCGA) and the cancer proteome atlas (TCPA). TCGA-derived expression data of specific mature miRNA isoforms from pancreatic cancer tissue was used.RESULTS: Fifteen circulating miRNAs with significantly altered expression levels detected in pancreatic cancer patients were queried separately in the pipeline. The pipeline generated predicted miRNA target genes, enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Predicted miRNA targets were evaluated by correlation analyses between each miRNA and its predicted targets. MiRNA functional analysis in combination with Kaplan-Meier survival analysis suggest that hsa-miR-885-5p could act as a tumor suppressor and should be validated as a potential prognostic biomarker in pancreatic cancer.CONCLUSIONS: Our miRNA functional analysis (miRFA) pipeline can serve as a valuable tool in biomarker discovery involving mature miRNAs associated with pancreatic cancer and could be developed to cover additional cancer types. Results for all mature miRNAs in TCGA pancreatic adenocarcinoma dataset can be studied and downloaded through a shiny web application at https://emmbor.shinyapps.io/mirfa/ .
  •  
2.
  • de Weerd, Hendrik Arnold, 1986- (författare)
  • Novel methods and software for disease module inference
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cellular organization is believed to be modular, meaning cellular functions are carried out by modules composed of clusters of genes, proteins and metabolites that are interconnected, co-regulated or physically interacting. In turn, these modules interact together and thereby form complex networks that taken together is considered to be the interactome. Modern high-throughput biological techniques have made high-scale accurate quantification of these biological molecules possible, the so called omics. The simultaneous measurement of these molecules enables a picture of the state of a cell at a resolution that was never before possible. Mapping these measurements aids greatly to elucidate a network structure of interactions. The ever growing size of public repositories for omics data has ushered in the advent of biology as a (big) data science and opens the door for data hungry machine learning approaches in biology. Complex diseases are multi-factorial and arise from a combination of genetic, environmental and lifestyle factors. Additionally, diagnosis and treatment is complicated by the fact that these genetic, environmental and lifestyle factors can vary between patients and may or may not give rise to different disease phenotypes that still classify as the same disease. Genetically, there is substantial heterogeneity among patients and therefore the emergence of a disease phenotype cannot be attributed to a single genetic mutation but rather to a combination of various mutations that may vary from patient to patient. As complex diseases can have different root causes but give rise to a similar disease phenotype, the implication is that different root causes perturb similar components in the interactome. Most of the work in this thesis is aimed at developing methods and computational pipelines to identify, analyze and evaluate these perturbed disease specific sub-networks in the interactome, so called disease modules. We started by collecting popular disease module inference methods and combined them in a unified framework, an R package called MODifieR (Paper I). The package uses standardized inputs and outputs, allowing for a more user-friendly way of running multiple disease module inference methods and the combining of modules. Next, we benchmarked the MODifieR methods on a compendium of transcriptomic and methylomic datasets and combined transcriptomic and methylomic disease modules for Multiple Sclerosis (MS) to a highly disease-relevant module greatly enriched with known risk factors for MS (Paper II). Subsequently, we extended the functionality of MODifieR with software for transcription factor hub detection in gene regulatory networks in a new framework with a graphical user interface, MODalyseR. We used MODalyseR to find upstream regulators and identified IKZF1 as an important upstream regulator for MS (Paper III). Lastly, we used the growing large-scale repositories of gene expression data to train a Variational Auto Encoder (VAE) to compress and decompress gene expression profiles with the aim of extracting disease modules from the latent space. Utilizing the continues nature of the latent space in VAE’s, we derived the differences in latent space representations between a compendium of complex disease gene expression profiles and matched healthy controls. We then derived disease modules from the decompressed latent space representation of this difference and found the modules highly enriched with disease-associated genes, generally outperforming the gold standard of transcriptomic analysis of diseases, top differentially expressed genes (Paper IV). To conclude, the main scientific contribution of this thesis lies in the development of software and methods for improving disease module inference, the evaluation of existing inference methods, the creation of new analysis workflows for multi-omics modules, and the introduction of a deep learning-based approach to the disease module inference toolkit. 
  •  
3.
  • Keane, Simon, et al. (författare)
  • DLG2 impairs dsDNA break repair and maintains genome integrity in neuroblastoma
  • 2022
  • Ingår i: DNA Repair. - : Elsevier. - 1568-7864 .- 1568-7856. ; 112
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn primary neuroblastoma, deletions on chromosome 11q are known to result in an increase in the total number of chromosomal breaks. The DNA double-strand break repair pathways mediated by NHEJ are often upregulated in cancer. DLG2, a candidate tumor suppressor gene on chromosome 11q, has previously been implicated in DNA repair.MethodsWe evaluated an association between gene expression and neuroblastoma patient outcome, risk categorization, and 11q status using publicly available microarray data from independent neuroblastoma patient datasets. Functional studies were conducted using comet assay and H2AX phosphorylation in neuroblastoma cell lines and in the fruit fly with UVC-induced DNA breaks.ResultsWe show that the NHEJ genes PARP1 and FEN1 are over expressed in neuroblastoma and restoration of DLG2 impairs their gene and protein expression. When exposed to UVC radiation, cells with DLG2 over expression show less DNA fragmentation and induce apoptosis in a p53 S46 dependent manner. We could also confirm that DLG2 over expression results in CHK1 phosphorylation consistent with previous reports of G2/M maintenance.ConclusionsTaken together, we show that DLG2 over expression increases p53 mediated apoptosis in response to etoposide and UVC mediated genotoxicity and reduced DNA replication machinery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy