SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de la Harpe Roxane) "

Search: WFRF:(de la Harpe Roxane)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Giontella, Alice, et al. (author)
  • Caffeine Intake, Plasma Caffeine Level, and Kidney Function : A Mendelian Randomization Study
  • 2023
  • In: Nutrients. - : MDPI. - 2072-6643. ; 15:20
  • Journal article (peer-reviewed)abstract
    • Caffeine is a psychoactive substance widely consumed worldwide, mainly via sources such as coffee and tea. The effects of caffeine on kidney function remain unclear. We leveraged the genetic variants in the CYP1A2 and AHR genes via the two-sample Mendelian randomization (MR) framework to estimate the association of genetically predicted plasma caffeine and caffeine intake on kidney traits. Genetic association summary statistics on plasma caffeine levels and caffeine intake were taken from genome-wide association study (GWAS) meta-analyses of 9876 and of >47,000 European ancestry individuals, respectively. Genetically predicted plasma caffeine levels were associated with a decrease in estimated glomerular filtration rate (eGFR) measured using either creatinine or cystatin C. In contrast, genetically predicted caffeine intake was associated with an increase in eGFR and a low risk of chronic kidney disease. The discrepancy is likely attributable to faster metabolizers of caffeine consuming more caffeine-containing beverages to achieve the same pharmacological effect. Further research is needed to distinguish whether the observed effects on kidney function are driven by the harmful effects of higher plasma caffeine levels or the protective effects of greater intake of caffeine-containing beverages, particularly given the widespread use of drinks containing caffeine and the increasing burden of kidney disease.
  •  
2.
  • Zagkos, Loukas, et al. (author)
  • Genetic investigation into the broad health implications of caffeine : evidence from phenome-wide, proteome-wide and metabolome-wide Mendelian randomization
  • 2024
  • In: BMC Medicine. - : BioMed Central (BMC). - 1741-7015. ; 22:1
  • Journal article (peer-reviewed)abstract
    • BackgroundCaffeine is one of the most utilized drugs in the world, yet its clinical effects are not fully understood. Circulating caffeine levels are influenced by the interplay between consumption behaviour and metabolism. This study aimed to investigate the effects of circulating caffeine levels by considering genetically predicted variation in caffeine metabolism.MethodsLeveraging genetic variants related to caffeine metabolism that affect its circulating levels, we investigated the clinical effects of plasma caffeine in a phenome-wide association study (PheWAS). We validated novel findings using a two-sample Mendelian randomization framework and explored the potential mechanisms underlying these effects in proteome-wide and metabolome-wide Mendelian randomization.ResultsHigher levels of genetically predicted circulating caffeine among caffeine consumers were associated with a lower risk of obesity (odds ratio (OR) per standard deviation increase in caffeine = 0.97, 95% confidence interval (CI) CI: 0.95—0.98, p = 2.47 × 10−4), osteoarthrosis (OR = 0.97, 95% CI: 0.96—0.98, P=1.10 × 10−8) and osteoarthritis (OR: 0.97, 95% CI: 0.96 to 0.98, P = 1.09 × 10−6). Approximately one third of the protective effect of plasma caffeine on osteoarthritis risk was estimated to be mediated through lower bodyweight. Proteomic and metabolomic perturbations indicated lower chronic inflammation, improved lipid profiles, and altered protein and glycogen metabolism as potential biological mechanisms underlying these effects.ConclusionsWe report novel evidence suggesting that long-term increases in circulating caffeine may reduce bodyweight and the risk of osteoarthrosis and osteoarthritis. We confirm prior genetic evidence of a protective effect of plasma caffeine on risk of overweight and obesity. Further clinical study is warranted to understand the translational relevance of these findings before clinical practice or lifestyle interventions related to caffeine consumption are introduced.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view