SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van Dongen Guus A M S) "

Search: WFRF:(van Dongen Guus A M S)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Peeters, Sarah G J A, et al. (author)
  • A Comparative Study of the Hypoxia PET Tracers [(18)F]HX4, [(18)F]FAZA, and [(18)F]FMISO in a Preclinical Tumor Model.
  • 2015
  • In: International journal of radiation oncology, biology, physics. - : Elsevier BV. - 1879-355X .- 0360-3016. ; 91:2, s. 351-9
  • Journal article (peer-reviewed)abstract
    • PURPOSE: Several individual clinical and preclinical studies have shown the possibility of evaluating tumor hypoxia by using noninvasive positron emission tomography (PET). The current study compared 3 hypoxia PET tracers frequently used in the clinic, [(18)F]FMISO, [(18)F]FAZA, and [(18)F]HX4, in a preclinical tumor model. Tracer uptake was evaluated for the optimal time point for imaging, tumor-to-blood ratios (TBR), spatial reproducibility, and sensitivity to oxygen modification.METHODS AND MATERIALS: PET/computed tomography (CT) images of rhabdomyosarcoma R1-bearing WAG/Rij rats were acquired at multiple time points post injection (p.i.) with one of the hypoxia tracers. TBR values were calculated, and reproducibility was investigated by voxel-to-voxel analysis, represented as correlation coefficients (R) or Dice similarity coefficient of the high-uptake volume. Tumor oxygen modifications were induced by exposure to either carbogen/nicotinamide treatment or 7% oxygen breathing.RESULTS: TBR was stabilized and maximal at 2 hours p.i. for [(18)F]FAZA (4.0 ± 0.5) and at 3 hours p.i. for [(18)F]HX4 (7.2 ± 0.7), whereas [(18)F]FMISO showed a constant increasing TBR (9.0 ± 0.8 at 6 hours p.i.). High spatial reproducibility was observed by voxel-to-voxel comparisons and Dice similarity coefficient calculations on the 30% highest uptake volume for both [(18)F]FMISO (R = 0.86; Dice coefficient = 0.76) and [(18)F]HX4 (R = 0.76; Dice coefficient = 0.70), whereas [(18)F]FAZA was less reproducible (R = 0.52; Dice coefficient = 0.49). Modifying the hypoxic fraction resulted in enhanced mean standardized uptake values for both [(18)F]HX4 and [(18)F]FAZA upon 7% oxygen breathing. Only [(18)F]FMISO uptake was found to be reversible upon exposure to nicotinamide and carbogen.CONCLUSIONS: This study indicates that each tracer has its own strengths and, depending on the question to be answered, a different tracer can be put forward.
  •  
2.
  • Rizvi, Saiyada N. F., et al. (author)
  • Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin's lymphoma using 89Zr-ibritumomab tiuxetan and PET
  • 2012
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 39:3, s. 512-520
  • Journal article (peer-reviewed)abstract
    • Purpose: Positron emission tomography (PET) with Zr-89-britumomab tiuxetan can be used to monitor biodistribution of Y-90-ibritumomab tiuxetan as shown in mice. The aim of this study was to assess biodistribution and radiation dosimetry of 90Y-ibritumomab tiuxetan in humans on the basis of Zr-89-ibritumomab tiuxetan imaging, to evaluate whether co-injection of a therapeutic amount of Y-90-ibritumomab tiuxetan influences biodistribution of Zr-89-ibritumomabtiuxetan and whether pre-therapy scout scans with Zr-89-ibritumomab tiuxetan can be used to predict biodistribution of Y-90-ibritumomab tiuxetan and the dose-limiting organ during therapy. Methods: Seven patients with relapsed B-cell non-Hodgkin's lymphoma scheduled for autologous stem cell transplantation underwent PET scans at 1, 72 and 144 h after injection of similar to 70 MBq Zr-89-ibritumomab tiuxetan and again 2 weeks later after co-injection of 15 MBq/kg or 30 MBq/kg Y-90-britumomab tiuxetan. Volumes of interest were drawn over liver, kidneys, lungs, spleen and tumours. Ibritumomab tiuxetan organ absorbed doses were calculated using OLINDA. Red marrow dosimetry was based on blood samples. Absorbed doses to tumours were calculated using exponential fits to the measured data. Results: The highest Y-90 absorbed dose was observed in liver (3.2 +/- 1.8 mGy/MBq) and spleen (2.9 +/- 0.7 mGy/MBq) followed by kidneys and lungs. The red marrow dose was 0.52 +/- 0.04 mGy/MBq, and the effective dose was 0.87 +/- 0.14 mSv/MBq. Tumour absorbed doses ranged from 8.6 to 28.6 mGy/MBq. Correlation between predicted pre-therapy and therapy organ absorbed doses as based on Zr-89-ibritumomab tiuxetan images was high (Pearson correlation coefficient r=0.97). No significant difference between pre-therapy and therapy tumour absorbed doses was found, but correlation was lower (r=0.75). Conclusion: Biodistribution of Zr-89-ibritumomab tiuxetan is not influenced by simultaneous therapy with Y-90-ibritumomab tiuxetan, and Zr-89-ibritumomab tiuxetan scout scans can thus be used to predict biodistribution and dose-limiting organ during therapy. Absorbed doses to spleen were lower than those previously estimated using In-111-ibritumomab tiuxetan. The dose-limiting organ in patients undergoing stem cell transplantation is the liver.
  •  
3.
  • Poot, Alex J, et al. (author)
  • [(11)C]Sorafenib: Radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. :
  • 2013
  • In: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 40:4, s. 488-497
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Tyrosine kinase inhibitors (TKIs) like sorafenib are important anticancer therapeutics with thus far limited treatment response rates in cancer patients. Positron emission tomography (PET) could provide the means for selection of patients who might benefit from TKI treatment, if suitable PET tracers would be available. The aim of this study was to radiolabel sorafenib (1) with carbon-11 and to evaluate its potential as TKI-PET tracer in vivo. METHODS: Synthetic methods were developed in which sorafenib was labeled at two different positions, followed by a metabolite analysis in rats and a PET imaging study in tumor-bearing mice. RESULTS: [methyl-(11)C]-1 and [urea-(11)C]-1 were synthesized in yields of 59% and 53%, respectively, with a purity of >99%. The identity of the products was confirmed by coinjection on HPLC with reference sorafenib. In an in vivo metabolite analysis [(11)C]sorafenib proved to be stable. The percentage of intact product in blood-plasma after 45min was 90% for [methyl-(11)C]-1 and 96% for [urea-(11)C]-1, respectively. Due to the more reliable synthesis, further research regarding PET imaging was performed with [methyl-(11)C]-1 in nude mice bearing FaDu (head and neck cancer), MDA-MB-231 (breast cancer) or RXF393 (renal cancer) xenografts. Highest tracer accumulation at a level of 2.52±0.33%ID/g was observed in RXF393, a xenograft line extensively expressing the sorafenib target antigen Raf-1 as assessed by immunohistochemistry. CONCLUSION: In conclusion, we have synthesized [(11)C]sorafenib as PET tracer, which is stable in vivo and has the capability to be used as PET tracer for imaging in tumor-bearing mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view