SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van Genuchten C. M.) "

Search: WFRF:(van Genuchten C. M.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahmad, Arslan, et al. (author)
  • Deep-dive into iron-based co-precipitation of arsenic : A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment
  • 2024
  • In: Water Research. - : Elsevier Ltd. - 0043-1354 .- 1879-2448. ; 249
  • Research review (peer-reviewed)abstract
    • The co-precipitation of Fe(III) (oxyhydr)oxides with arsenic (As) is one of the most widespread approaches to treat As-contaminated groundwater in both low- and high-income settings. Fe-based co-precipitation of As occurs in a variety of conventional and decentralized treatment schemes, including aeration and sand filtration, ferric chloride addition and technologies based on controlled corrosion of Fe(0) (i.e., electrocoagulation). Despite its ease of deployment, Fe-based co-precipitation of As entails a complex series of chemical reactions that often occur simultaneously, including electron-transfer reactions, mineral nucleation, crystal growth, and As sorption. In recent years, the growing use of sophisticated synchrotron-based characterization techniques in water treatment research has generated new detailed and mechanistic insights into the reactions that govern As removal efficiency. The purpose of this critical review is to synthesize the current understanding of the molecular-scale reaction pathways of As co-precipitation with Fe(III), where the source of Fe(III) can be ferric chloride solutions or oxidized Fe(II) sourced from natural Fe(II) in groundwater, ferrous salts or controlled Fe(0) corrosion. We draw primarily on the mechanistic knowledge gained from spectroscopic and nano-scale investigations. We begin by describing the least complex reactions relevant in these conditions (Fe(II) oxidation, Fe(III) polymerization, As sorption in single-solute systems) and build to multi-solute systems containing common groundwater ions that can alter the pathways of As uptake during Fe(III) co-precipitation (Ca, Mg bivalent cations; P, Si oxyanions). We conclude the review by providing a perspective on critical knowledge gaps remaining in this field and new research directions that can further improve the understanding of As removal via Fe(III) co-precipitation.
  •  
2.
  • van Genuchten, C. M., et al. (author)
  • Heavy metal removal potential of olivine
  • 2023
  • In: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 245
  • Journal article (peer-reviewed)abstract
    • Industrial wastewater containing heavy metals, such as Cd and Pb, must be treated prior to discharge to meet increasingly stringent discharge guidelines and to limit the impact of toxic metals on ecosystems and human health. The application of olivine particles is a natural mineral-based solution to treat heavy metal-laden wastewaters, but little is known about the efficiency and mechanism of metal removal by this solid phase. In this work, we investigate the potential of olivine for heavy metal treatment by combining batch metal removal experiments with solid-phase characterization by synchrotron-based X-ray techniques and electron microscopy. We probed the removal behaviour of a variety of metal contaminants (Co, Ni, Cd, Zn, Cu, Pb; initial concentration = 1500 µg/L) and used Zn specifically to identify the metal removal pathway of olivine. We found that olivine in powdered (0.3 g/L) and granulated (0.5 g/L) forms was able to remove up to >90% of the initial metal, depending on the metal identity, with the efficiency increasing in order of Co ≤ Cd ≤ Ni
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (1)
research review (1)
Type of content
peer-reviewed (2)
Author/Editor
Ahmad, Arslan (2)
van Genuchten, C. M. (2)
Hamaekers, H. (1)
Fraiquin, D. (1)
Hollanders, S. (1)
University
Royal Institute of Technology (2)
Language
English (2)
Research subject (UKÄ/SCB)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view