SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van der Spoel David Docent) "

Search: WFRF:(van der Spoel David Docent)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Guanglin, Kuang, 1987- (author)
  • Theoretical Studies of Protein-Ligand Interactions
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • The protein-ligand interaction is an important issue in rational drug design and protein function research. This thesis focuses on the study of protein-ligand interactions using various molecular modeling methods, which are used in combination to predict the binding modes and calculate the binding free energies of several important protein-ligand systems, as summarized below.In Paper I, we investigated the binding profile of a type I positive allosteric modulator (PAM) NS-1738 with the α7-nicotinic acetylcholine receptor (α7-nAChR). NS-1738 is found to have three different binding sites on α7-nAChR and has moderate binding affinities to the receptor.In Paper II, we revealed the binding mechanism of a PET radio-ligand [18F]ASEM with α7-nAChR. Using metadynamics simulations, we managed to find a stable state which is not observed in molecular docking and unbiased molecular dynamics simulations. Free energy analysis further confirmed that this stable state is the global minimum with respect to the selected collective variables.In Paper III, we studied the binding modes and binding affinities of two probes (AZD2184 and thioflavin T) for the detection of amyloid β(1-42) fibrils in clinical studies. We found that AZD2184 and thioflavin T are able to bind to several sites of the Aβ(1-42) fibril. Due to the small size, planarity and neutrality of AZD2184, it binds more strongly with Aβ(1-42) fibril at all sites. By contrast, thioflavin T has more significant conformational changes after binding, which is the reason that thioflavin T can be used as a fluorescent probe in in vitro studies.In Paper IV, we studied the binding profile of PtdIns(3,4,5)P3 with the plecsktrin homology (PH) domain of Saprolegnia monoica cellulose synthase. We first studied the binding modes of the inositol groups with the PH domain in solution, the results of which were then used to guide the modeling of the binding mode of PtdIns(3,4,5)P3 in a membrane with the PH domain.
  •  
2.
  • Jönsson, H. Olof, 1985- (author)
  • Femtosecond Dynamics in Water and Biological Materials with an X-Ray Laser
  • 2016
  • Licentiate thesis (other academic/artistic)abstract
    • Using high intensity ultrashort pulses from X-ray free electron lasers to investigate soft matter is a recent and successful development. The last decade has seen the development of new variant of protein crystallography with femtosecond dynamics, and single particle imaging with atomic resolution is on the horizon. The work presented here is part of the effort to explain what processes influence the capability to achieve high resolution information in these techniques. Non-local thermal equilibrium plasma continuum modelling is used to predict signal changes as a function of pulse duration, shape and energy. It is found that ionization is the main contributor to radiation damage in certain photon energy and intensity ranges, and diffusion depending on heating is dominant in other scenarios. In femtosecond protein crystallography, self-gating of Bragg diffraction is predicted to quench the signal from the latest parts of an X-ray pulse. At high intensities ionization is dominant and the last part of the pulse will contain less information at low resolution. At lower intensities, displacement will dominate and high resolution information will be gated first. Temporal pulse shape is also an important factor. The difference between pulse shapes is most prominent at low photon energy in the form of a general increase or decrease in signal, but the resolution dependance is most prominent at high energies. When investigating the X-ray scattering from water a simple diffusion model can be replaced by a molecular dynamics simulation, which predicts structural changes in water on femtosecond timescales. Experiments performed at LCLS are presented that supports the simulation results on structural changes that occur in the solvent during the exposure.
  •  
3.
  • Patriksson, Alexandra, 1977- (author)
  • From Solution into Vacuum - Structural Transitions in Proteins
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • Information about protein structures is important in many areas of life sciences, including structure-based drug design. Gas phase methods, like electrospray ionization and mass spectrometry are powerful tools for the analysis of molecular interactions and conformational changes which complement existing solution phase methods. Novel techniques such as single particle imaging with X-ray free electron lasers are emerging as well. A requirement for using gas phase methods is that we understand what happens to proteins when injected into vacuum, and what is the relationship between the vacuum structure and the solution structure.Molecular dynamics simulations in combination with experiments show that protein structures in the gas phase can be similar to solution structures, and that hydrogen bonding networks and secondary structure elements can be retained. Structural changes near the surface of the protein happen quickly (ns-µs) during transition from solution into vacuum. The native solution structure results in a reasonably well defined gas phase structure, which has high structural similarity to the solution structure.Native charge locations are in some cases also preserved, and structural changes, due to point mutations in solution, can also be observed in vacuo. Proteins do not refold in vacuo: when a denatured protein is injected into vacuum, the resulting gas phase structure is different from the native structure.Native structures can be protected in the gas phase by adjusting electrospray conditions to avoid complete evaporation of water. A water layer with a thickness of less than two water molecules seems enough to preserve native conditions.The results presented in this thesis give confidence in the continued use of gas phase methods for analysis of charge locations, conformational changes and non-covalent interactions, and provide a means to relate gas phase structures and solution structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view