SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0022 3042 "

Sökning: L773:0022 3042

  • Resultat 1-25 av 413
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Fogel, W.A., et al. (författare)
  • Neuronal storage of histamine in the brain and tele-methylimidazoleacetic acid excretion in portocaval shunted rats
  • 2002
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 80:3, s. 375-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Rats with portocaval anastomosis (PCA), an animal model of hepatic encephalopathy (HE), have very high brain histamine concentrations. Our previous studies based on a biochemical approach indicated histamine accumulation in the neuronal compartment. In this study, immunohistochemical evidence is presented which further supports the amine localization in histaminergic neurons. These neurons become pathological in appearance with cisternae frequently seen along histaminergic fibres in many brain areas, including the hypothalamus, amygdala, substantia nigra and cerebral cortex. Such formations were not observed in sham-operated animals. The neuronal deposition is predominant, and unique for histamine. It serves as a mechanism to counterbalance excessive brain neurotransmitter formation evoked by PCA. However, there are other mechanisms. The data provided here show that there is also a significant increase in histamine catabolism in the shunted rats, as reflected by both the higher brain N-telemethylhistamine (t-MeHA) concentration and urinary excretion of N-tele-methylimidazoleacetic acid (t-MelmAA), a major brain histamine end product. The stomach, in addition to the brain, is a site of enhanced histamine synthesis in portocavally shunted subjects. After gastrectomy or food deprivation to eliminate the contribution of the stomach, shunted rats excrete significantly more t-MelmAA, implying the role of the CNS. This last finding suggests that under strictly defined conditions, namely in parenterally fed HE patients with abnormal plasma L-histidine, the measurement of urinary t-MelmAA might provide valuable information concerning putative brain histaminergic activity.
  •  
4.
  • Agardh, Carl-David, et al. (författare)
  • Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration
  • 1978
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 31:5, s. 1135-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe hypoglycemia was induced by insulin in lightly anaesthetized (70°o N2O) and artificially ventilated rats. Brain tissue was frozen in situ after spontaneous EEG potentials had disappeared for 5. 10. 15 or 30 min and cerebral cortex concentrations of labile organic phosphates, glycolytic metabolites, ammonia and amino acids were determined. In other experiments, recovery was induced by glucose injection at the end of the period of EEG silence. All animals with an isoelectric EEG showed extensive deterioration of the cerebral energy state. and gross perturbation of amino acid concentrations. The latter included a 4-fold rise in aspartate concentration and reductions in glutamate and glutamine concentrations to 20 and 5oo of control levels respectively. There was an associated rise in ammonia concentration to about 3μmol-g-1. Administration of glucose brought about extensive recovery of cerebral energy metabolism. For example, after an isoelectric period of 30 min tissue concentrations of phosphocreatine returned to or above normal, the accumulation of ADP and AMP was reversed, there was extensive resynthesis of glycogen and glutamine and full normalisation of tissue concentrations of pyruvate. α-ketoglutarate. GABA and ammonia. However, even after 3 h of recovery there was a reduction in the ATP concentration and thereby in adenine nucleotide pool, moderate elevations of lactate content and the lactate pyruvate ratio, and less than complete restoration of the amino acid pool. It is concluded that some cells may have been irreversibly damaged by the hypoglycemia.
  •  
5.
  • Agardh, Carl-David, et al. (författare)
  • Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia
  • 1981
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 36:2, s. 490-500
  • Tidskriftsartikel (refereegranskat)abstract
    • Several previous studies have demonstrated that severe hypoglycemia is accompanied by consumption of endogenous brain substrates (glycolytic and citric acid cycle metabolites and free amino acids) and some have shown a loss of structural components as well, notably phospholipids. In the present study, on paralysed and artificially ventilated rats, we measured cerebral oxygen and glucose consumption during 30 min of hypoglycemic coma (defined as hypoglycemia of sufficient severity to cause cessation of spontaneous EEG activity) and calculated the non-glucose oxygen consumption. In an attempt to estimate the missing substrate we measured tissue concentrations of phospholipids and RNA. After 5 min of hypoglycemic coma, tissue phospholipid content decreased by about 8% with no further change during the subsequent 55 min. A similar reduction remained after 90 min of recovery, induced by glucose administration following 30 min of coma. Since no preferential loss of polyenoic fatty acids or of ethanolamine phosphoglycerides occurred, it is concluded that loss of phospholipids was due to phospholipase activity rather than to peroxidative degradation. The free fatty acid concentration increased sixfold after 5 min of coma and remained elevated during the course of hypoglycemia. A 9% reduction in tissue RNA content was observed after 30 min of hypoglycemia. Calculations indicated that available endogenous carbohydrate and amino acid substrates were essentially consumed after 5 min of coma, and that other non-glucose substrates must have accounted for approximately 50μmol·g−1 of oxygen (8.3 μmol·g−1 in terms of glucose equivalents) within the 5–30 min period. The 10% reduction in phospholipid-bound fatty acids was more than sufficient (in four- to fivefold excess) to account for this oxygen consumption. However, since no further degradation occurred in the 5–30 min period, there is no simple, direct, quantitative relationship between oxygen consumption and cortical fatty acid oxidation during this interval. The possibility thus remains that unmeasured exogenous or endogenous substrates were utilized.
  •  
6.
  • Agardh, Carl-David, et al. (författare)
  • Influence of severe hypoglycemia on mitochondrial and plasma membrane function in rat brain
  • 1982
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 38:3, s. 662-668
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Previous experiments have shown that severe hypoglycemia disrupts cerebral energy state in spite of a maintained cerebral oxygen consumption, suggesting uncoupling of oxidative phosphorylation. Other studies have demonstrated that hypoglycemia leads to loss of cerebral cortical phospholipids and phospholipid-bound fatty acids. The objective of the present study was, therefore, to study respiratory characteristics of brain mitochondria during severe hypoglycemia and to correlate respiratory activity to mitochondrial phospholipid composition. Mitochondria were isolated after 30 or 60 min of hypoglycemia with ceased EEG activity, and after a 90-min recovery period, and their resting (state 4) and ADP-stimulated (state 3) oxygen consumption rates and phospholipids and phospholipid-bound fatty acid content were measured. After 30 min of hypoglycemia, state 3 respiration decreased without any increase in state 4 respiration or change in ADP/O ratio. This decrease, which occurred with glutamate plus malate—but not with succinate—as substrates, was partly reversed by addition of bovine serum albumin and KCI. Chemical analyses of isolated mitochondria did not reveal changes in their phospholipid or fatty acid content. The results thus failed to account for the dissociation of cerebral energy state and oxygen consumption. It is emphasized, though, that uncoupling may well occur in vivo due to accumulation of free fatty acids and "futile cycling" of K+ and Ca2+. After 60 min of hypoglycemia, a moderate decrease in state 3 respiration was observed also with succinate as substrate, and there was some decrease in ADP/O ratios in KCI-containing media. However, the changes in ADP/O ratios were more conspicuous during recovery; in addition, state 4 respiration increased significantly. It is concluded that changes in mitochondrial function after 30 min of hypoglycemia are potentially reversible but that true mitochondrial failure develops in the recovery period following 60 min of hypoglycemia. This conclusion was corroborated by results demonstrating incomplete recovery of cerebral energy state. Since EEG and sensory evoked potentials return after 30 min but not after 60 min of hypoglycemia it seemed difficult to explain failure of return of electrophysiological function after 60 min of hypoglycemia solely by mitochondrial dysfunction; plasma membrane function was therefore assessed by measurements of extracellular potassium activity ([K+]e). The results showed that whereas [K+]e remained close to control in the recovery period following 30 min of hypoglycemia it rose progressively during recovery following 60 min of hypoglycemia. Possibly, inhibition of Na+ K+–activated ATPase could contribute to the permanent loss of spontaneous or evoked electrical activity.
  •  
7.
  •  
8.
  •  
9.
  • Allard, Per, et al. (författare)
  • [3H]GBR-12935 binding to cytochrome P450 in the human brain.
  • 1994
  • Ingår i: Journal of Neurochemistry. - 0022-3042 .- 1471-4159. ; 62:1, s. 342-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of multiple [3H]GBR-12935 binding sites in the human brain has been revealed in several recent studies. One site represents the dopamine uptake site. In rat brain it was demonstrated that [3H]GBR-12935 also binds to nondopaminergic "piperazine acceptor sites." One of these sites has been identified as cytochrome P450IID1 in canine brain. [3H]GBR-12935 binding to the piperazine acceptor sites in the human brain was investigated in the present study. A pharmacological definition of the piperazine acceptor sites is presented: the [3H]GBR-12935 binding fraction that could be discriminated by 10 microM GBR-12909 in the presence of 0.3 microM mazindol. This binding fraction was saturable, with binding affinity in the range of 3-8 nM. It was also demonstrated that the piperazine acceptor or cytochrome P450-sensitive drugs cis-flupentixol and proadifen (SKF 525 A) compete for the same binding sites, suggesting the cytochrome P450 nature of the binding. The findings presented support the proposal that at least part of this fraction represents cytochrome P450IID6, the human form of P450IID1. The distribution of [3H]GBR-12935 binding to the suggested P450IID6-site in 12 brain regions was examined, without significant differences in binding densities between the regions. The significance of the present findings on the cytochrome P450 system in brain is discussed.
  •  
10.
  • Allard, Per, et al. (författare)
  • [3H]GBR-12935 binding to human cerebral cortex is not to dopamine uptake sites.
  • 1994
  • Ingår i: Journal of Neurochemistry. - 0022-3042 .- 1471-4159. ; 62:1, s. 338-41
  • Tidskriftsartikel (refereegranskat)abstract
    • The binding of the dopamine uptake inhibitor [3H]GBR-12935 to 16 regions of the human brain was investigated in competition experiments with increasing concentrations of GBR-12909, mazindol, and dopamine. The methodology used included a relatively high tissue concentration (8 mg/ml) and addition of 5 mM KCl in the assay buffer. GBR-12909 inhibited 80-90% of the binding in most regions, whereas dopamine only inhibited the binding in the striatum. Mazindol inhibited only part of the cortical binding at concentrations of > 1 microM, whereas the inhibition in the caudate and the putamen also contained a high-affinity component representing the dopamine uptake site. It is concluded that the [3H]GBR-12935 binding sensitive to GBR-12909 cannot be regarded as specific binding to the dopamine uptake site because the displaceable binding most likely is not related to the dopamine uptake site.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Andreasson, K. I., et al. (författare)
  • Targeting innate immunity for neurodegenerative disorders of the central nervous system
  • 2016
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042. ; , s. 653-693
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7–9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. (Figure presented.) Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7–9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. © 2016 International Society for Neurochemistry
  •  
18.
  • Araujo, IM, et al. (författare)
  • Calpain activation is involved in early caspase-independent neurodegeneration in the hippocampus following status epilepticus
  • 2008
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 105:3, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for increased calpain activity has been described in the hippocampus of rodent models of temporal lobe epilepsy. However, it is not known whether calpains are involved in the cell death that accompanies seizures. In this work, we characterized calpain activation by examining the proteolysis of calpain substrates and in parallel we followed cell death in the hippocampus of epileptic rats. Male Wistar rats were injected with kainic acid (KA; 10 mg/kg) intraperitoneally and sacrificed 24h later, after development of grade 5 seizures. We observed a strong Fluoro-Jade labelling in the CA1 and CA3 areas of the hippocampus in the rats that received KA, as compared to saline-treated rats. Immunohistochemistry and Western blot analysis for the calpain-derived breakdown products of spectrin (SBDP) showed evidence of increased calpain activity in the same regions of the hippocampus where cell death is observed. No evidence was found for caspase activation, in the same conditions. Treatment with the calpain inhibitor MDL 28170 significantly prevented the neurodegeneration observed in CA1. Taken together, our data suggest that early calpain activation, but not caspase activation, is involved in neurotoxicity in the hippocampus after status epilepticus.
  •  
19.
  • Arber, Charles, et al. (författare)
  • Mass spectrometry analysis of tau and amyloid-beta in iPSC-derived models of Alzheimer's disease and dementia.
  • 2021
  • Ingår i: Journal of neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 159:2, s. 305-317
  • Tidskriftsartikel (refereegranskat)abstract
    • Induced pluripotent stem cell (iPSC) technology enables the generation of human neurons in vitro, which contain the precise genome of the cell donor, therefore permitting the generation of disease models from individuals with a disease-associated genotype of interest. This approach has been extensively used to model inherited forms of Alzheimer's disease and frontotemporal dementia. The combination of iPSC-derived neuronal models with targeted mass spectrometry analysis has provided unprecedented insights into the regulation of specific proteins in human neuronal physiology and pathology. For example enabling investigations into tau and APP/Aβ, specifically: protein isoform expression, relative levels of cleavage fragments, aggregated species and functionally critical post-translational modifications. The use of mass spectrometry has enabled a determination of how closely iPSC-derived models recapitulate disease profiles observed in the human brain. This review will highlight the progress to date in studies using iPSCs and mass spectrometry to model Alzheimer's disease and dementia. We go on to convey our optimism, as studies in the near future will make use of this precedent, together with novel techniques such as genome editing and stable isotope labelling, to provide real progress towards an in depth understanding of early neurodegenerative processes and development of novel therapeutic agents.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Bekku, Yoko, et al. (författare)
  • Brevican distinctively assembles extracellular components at the large diameter nodes of Ranvier in the CNS
  • 2009
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 108:5, s. 1266-1276
  • Tidskriftsartikel (refereegranskat)abstract
    • Brevican is known to be an abundant extracellular matrix component in the adult brain and a structural constituent of perineuronal nets. We herein show that brevican, tenascin-R (TN-R) and phosphacan are present at the nodes of Ranvier on myelinated axons with a particularly large diameter in the central nervous system. A brevican deficiency resulted in a reorganization of the nodal matrices, which was characterized by the shift of TN-R, and concomitantly phosphacan, from an axonal diameter-dependent association with nodes to an axonal diameter independent association. Supported by the co-immunoprecipitation results, these observations indicate that the presence of TN-R and phosphacan at nodes is normally brevican-dependent, while in the absence of brevican these molecules can also be recruited by versican V2. The versican V2 and Bral1 distribution was not affected, thus indicating a brevican-independent role of these two molecules for establishing hyaluronan-binding matrices at the nodes. Our results revealed that brevican plays a crucial role in determining the specialization of the hyaluronan-binding nodal matrix assemblies in large diameter nodes.
  •  
24.
  • Benveniste, Helene, et al. (författare)
  • Determination of Brain Interstitial Concentrations by Microdialysis
  • 1989
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 52:6, s. 1741-1750
  • Tidskriftsartikel (refereegranskat)abstract
    • Microdialysis is an extensively used technique for the study of solutes in brain interstitial space. The method is based on collection of substances by diffusion across a dialysis membrane positioned in the brain. The outflow concentration reflects the interstitial concentration of the substance of interest, but the relationship between these two entities is at present unclear. So far, most evaluations have been based solely on calibrations in saline. This procedure is misleading, because the ease by which molecules in saline diffuse into the probe is different from that of tissue. We describe here a mathematical analysis of mass transport into the dialysis probe in tissue based on diffusion equations in complex media. The main finding is that diffusion characteristics of a given substance have to be included in the formula. These include the tortuosity factor (λ) and the extracellular volume fraction (α). We have substantiated this by studies in a welldefined complex medium (red blood cell suspensions) as well as in brain. We conclude that the traditional calculation procedure results in interstitial concentrations that are too low by a factor of λ2/α for a given compound.
  •  
25.
  • Bergemalm, Daniel, et al. (författare)
  • Superoxide dismutase-1 and other proteins in inclusions from transgenic amyotrophic lateral sclerosis model mice
  • 2010
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 114:2, s. 408-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutant superoxide dismutase-1 (SOD1) causes amyotrophic lateral sclerosis (ALS) through a cytotoxic mechanism of unknown nature. A hallmark in ALS patients and transgenic mouse models carrying human SOD1 (hSOD1) mutations are hSOD1-immunoreactive inclusions in spinal cord ventral horns. The hSOD1 inclusions may block essential cellular functions or cause toxicity through sequestering of other proteins. Inclusions from four different transgenic mouse models were examined after density gradient ultracentrifugation. The inclusions are complex structures with heterogeneous densities and are disrupted by detergents. The aggregated hSOD1 was mainly composed of subunits that lacked the native stabilizing intra-subunit disulfide bond. A proportion of subunits formed hSOD1 oligomers or was bound to other proteins through disulfide bonds. Dense inclusions could be isolated and the protein composition was analyzed using proteomic techniques. Mutant hSOD1 accounted for half of the protein. Ten other proteins were identified. Two were cytoplasmic chaperones, four were cytoskeletal proteins, and 4 were proteins that normally reside in the endoplasmic reticulum (ER). The presence of ER proteins in inclusions containing the primarily cytosolic hSOD1 further supports the notion that ER stress is involved in ALS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 413
Typ av publikation
tidskriftsartikel (322)
konferensbidrag (83)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (328)
övrigt vetenskapligt/konstnärligt (85)
Författare/redaktör
Zetterberg, Henrik, ... (25)
Blennow, Kaj, 1958 (20)
Graff, C (20)
Fuxe, K (17)
Wieloch, Tadeusz (17)
Winblad, B (13)
visa fler...
Nordberg, A (11)
Borroni, B. (11)
Galimberti, D (11)
van Swieten, J (11)
Hokfelt, T (10)
Arenas, E (9)
Ekström, Per (9)
Masellis, M (9)
Tagliavini, F (8)
Cenci Nilsson, Angel ... (8)
Sorbi, S (8)
Finger, E (8)
Laforce, R (8)
Brundin, Patrik (7)
Fisone, G (7)
Kirik, Deniz (7)
Blomgren, K (7)
Rohrer, J (7)
Hagberg, Henrik, 195 ... (6)
Brinkmalm, Gunnar (6)
Hagberg, H (6)
Lundblad, Martin (6)
Bazan, NG (6)
Greengard, P (6)
Zhu, Changlian, 1964 (6)
Hellstrom-Lindahl, E (6)
Elmér, Eskil (6)
Hanrieder, Jörg, 198 ... (6)
Zhu, CL (6)
Michno, Wojciech, 19 ... (6)
Hansson, Magnus (5)
Siesjö, Bo (5)
Terenius, L (5)
Harkany, T (5)
Goiny, M (5)
Pei, JJ (5)
Marklund, Stefan L. (5)
Frisoni, G (5)
Mendonca, A (5)
Wang, XY (5)
Herrera-Marschitz, M (5)
Tindberg, N (5)
Sedzik, J (5)
Sedzik, Jan (5)
visa färre...
Lärosäte
Karolinska Institutet (217)
Lunds universitet (93)
Göteborgs universitet (62)
Uppsala universitet (33)
Umeå universitet (15)
Stockholms universitet (11)
visa fler...
Chalmers tekniska högskola (10)
Kungliga Tekniska Högskolan (9)
Linköpings universitet (7)
Högskolan i Gävle (1)
Högskolan Väst (1)
Linnéuniversitetet (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (413)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (173)
Naturvetenskap (39)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy