SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1476 5578 OR L773:1359 4184 "

Search: L773:1476 5578 OR L773:1359 4184

  • Result 1-25 of 398
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hovey, Daniel, et al. (author)
  • Antisocial behavior and polymorphisms in the oxytocin receptor gene: findings in two independent samples.
  • 2016
  • In: Molecular psychiatry. - Stockholm : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 16, s. 983-988
  • Journal article (peer-reviewed)abstract
    • The quantitative genetic contribution to antisocial behavior is well established, but few, if any, genetic variants are established as risk factors. Emerging evidence suggests that the neuropeptide oxytocin (OXT) may modulate interpersonal aggression. We here investigated whether single-nucleotide polymorphisms (SNPs) in the OXT receptor gene (OXTR) are associated with the expression of antisocial behavior. A discovery sample, including both sexes, was drawn from the Child and Adolescent Twin Study in Sweden (CATSS; n=2372), and a sample from the Twin Study of Child and Adolescent Development (TCHAD; n=1232) was used for replication. Eight SNPs in OXTR, selected on previous associations with social and antisocial behavior, were genotyped in the participants of CATSS. Significant polymorphisms were subsequently genotyped in TCHAD for replication. Participants completed self-assessment questionnaires-Life History of Aggression (LHA; available only in CATSS), and Self-Reported Delinquency (SRD; available in both samples)-designed to capture antisocial behavior as continuous traits. In the discovery sample, the rs7632287 AA genotype was associated with higher frequency of antisocial behavior in boys, and this was then replicated in the second sample. In particular, overt aggression (directly targeting another individual) was strongly associated with this genotype in boys (P=6.2 × 10(-7) in the discovery sample). Meta-analysis of the results for antisocial behavior from both samples yielded P=2.5 × 10(-5). Furthermore, an association between rs4564970 and LHA (P=0.00013) survived correction in the discovery sample, but there was no association with the SRD in the replication sample. We conclude that the rs7632287 and rs4564970 polymorphisms in OXTR may independently influence antisocial behavior in adolescent boys. Further replication of our results will be crucial to understanding how aberrant social behavior arises, and would support the OXT receptor as one potential target in the treatment of aggressive antisocial behavior.Molecular Psychiatry advance online publication, 22 September 2015; doi:10.1038/mp.2015.144.
  •  
2.
  • Mataix-Cols, David, et al. (author)
  • A total-population multigenerational family clustering study of autoimmune diseases in obsessive-compulsive disorder and Tourette’s/chronic tic disorders
  • 2017
  • In: Molecular Psychiatry. - Stockholm : Karolinska Institutet, Dept of Medical Epidemiology and Biostatistics. - 1359-4184 .- 1476-5578.
  • Journal article (peer-reviewed)abstract
    • The association between obsessive-compulsive disorder (OCD) and Tourette's/chronic tic disorders (TD/CTD) with autoimmune diseases (ADs) is uncertain. In this nationwide study, we sought to clarify the patterns of comorbidity and familial clustering of a broad range of ADs in individuals with OCD, individuals with TD/CTD and their biological relatives. From a birth cohort of 7 465 455 individuals born in Sweden between 1940 and 2007, we identified 30 082 OCD and 7279 TD/CTD cases in the National Patient Register and followed them up to 31 December 2013. The risk of 40 ADs was evaluated in individuals with OCD, individuals with TD/CTD and their first- (siblings, mothers, fathers), second- (half siblings) and third-degree (cousins) relatives, compared with population controls. Individuals with OCD and TD/CTD had increased comorbidity with any AD (43% and 36%, respectively) and many individual ADs. The risk of any AD and several individual ADs was consistently higher among first-degree relatives than among second- and third-degree relatives of OCD and TD/CTD probands. The risk of ADs was very similar in mothers, fathers and siblings of OCD probands, whereas it tended to be higher in mothers and fathers of TD/CTD probands (compared with siblings). The results suggest a familial link between ADs in general (that is, not limited to Streptococcus-related conditions) and both OCD and TD/CTD. Additional mother-specific factors, such as the placental transmission of antibodies, cannot be fully ruled out, particularly in TD/CTD.
  •  
3.
  • Pettersson, E., et al. (author)
  • Common psychiatric disorders share the same genetic origin : a multivariate sibling study of the Swedish population
  • 2016
  • In: Molecular Psychiatry. - New York, USA : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 21:5, s. 717-721
  • Journal article (peer-reviewed)abstract
    • Recent studies have shown that different mental-health problems appear to be partly influenced by the same set of genes, which can be summarized by a general genetic factor. To date, such studies have relied on surveys of community-based samples, which could introduce potential biases. The goal of this study was to examine whether a general genetic factor would still emerge when based on a different ascertainment method with different biases from previous studies. We targeted all adults in Sweden (n=3 475 112) using national registers and identified those who had received one or more psychiatric diagnoses after seeking or being forced into mental health care. In order to examine the genetic versus environmental etiology of the general factor, we examined whether participants' full- or half-siblings had also received diagnoses. We focused on eight major psychiatric disorders based on the International Classification of Diseases, including schizophrenia, schizoaffective disorder, bipolar disorder, depression, anxiety, attention-deficit/hyperactivity disorder, alcohol use disorder and drug abuse. In addition, we included convictions of violent crimes. Multivariate analyses demonstrated that a general genetic factor influenced all disorders and convictions of violent crimes, accounting for between 10% (attention-deficit/hyperactivity disorder) and 36% (drug abuse) of the variance of the conditions. Thus, a general genetic factor of psychopathology emerges when based on both surveys as well as national registers, indicating that a set of pleiotropic genes influence a variety of psychiatric disorders.
  •  
4.
  • Abe, C., et al. (author)
  • Mania-related effects on structural brain changes in bipolar disorder - a narrative review of the evidence
  • 2023
  • In: Molecular Psychiatry. - 1359-4184. ; 28:57, s. 2674-2682
  • Journal article (peer-reviewed)abstract
    • Cross-sectional neuroimaging studies show that bipolar disorder is associated with structural brain abnormalities, predominantly observed in prefrontal and temporal cortex, cingulate gyrus, and subcortical regions. However, longitudinal studies are needed to elucidate whether these abnormalities presage disease onset or are consequences of disease processes, and to identify potential contributing factors. Here, we narratively review and summarize longitudinal structural magnetic resonance imaging studies that relate imaging outcomes to manic episodes. First, we conclude that longitudinal brain imaging studies suggest an association of bipolar disorder with aberrant brain changes, including both deviant decreases and increases in morphometric measures. Second, we conclude that manic episodes have been related to accelerated cortical volume and thickness decreases, with the most consistent findings occurring in prefrontal brain areas. Importantly, evidence also suggests that in contrast to healthy controls, who in general show age-related cortical decline, brain metrics remain stable or increase during euthymic periods in bipolar disorder patients, potentially reflecting structural recovering mechanisms. The findings stress the importance of preventing manic episodes. We further propose a model of prefrontal cortical trajectories in relation to the occurrence of manic episodes. Finally, we discuss potential mechanisms at play, remaining limitations, and future directions.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Alic, I., et al. (author)
  • Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain
  • 2021
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26:10, s. 5766-5788
  • Journal article (peer-reviewed)abstract
    • A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of beta-amyloid-(A beta)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar A beta deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical beta and gamma-secretase inhibition. We found that T21 organoids secrete increased proportions of A beta-preventing (A beta 1-19) and A beta-degradation products (A beta 1-20 and A beta 1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in similar to 30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
  •  
9.
  • Amare, A. T., et al. (author)
  • Association of polygenic score for major depression with response to lithium in patients with bipolar disorder
  • 2021
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 2457-2470
  • Journal article (peer-reviewed)abstract
    • Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi(+)Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.
  •  
10.
  • , amudyata, et al. (author)
  • SARS-CoV-2 promotes microglial synapse elimination in human brain organoids
  • 2022
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 27:10, s. 3939-3950
  • Journal article (peer-reviewed)abstract
    • Neuropsychiatric manifestations are common in both the acute and post-acute phase of SARS-CoV-2 infection, but the mechanisms of these effects are unknown. In a newly established brain organoid model with innately developing microglia, we demonstrate that SARS-CoV-2 infection initiate neuronal cell death and cause a loss of post-synaptic termini. Despite limited neurotropism and a decelerating viral replication, we observe a threefold increase in microglial engulfment of postsynaptic termini after SARS-CoV-2 exposure. We define the microglial responses to SARS-CoV-2 infection by single cell transcriptomic profiling and observe an upregulation of interferon-responsive genes as well as genes promoting migration and synapse engulfment. To a large extent, SARS-CoV-2 exposed microglia adopt a transcriptomic profile overlapping with neurodegenerative disorders that display an early synapse loss as well as an increased incident risk after a SARS-CoV-2 infection. Our results reveal that brain organoids infected with SARS-CoV-2 display disruption in circuit integrity via microglia-mediated synapse elimination and identifies a potential novel mechanism contributing to cognitive impairments in patients recovering from COVID-19.
  •  
11.
  • Andersson, Evelyn, et al. (author)
  • Genetics of response to cognitive behavior therapy in adults with major depression : a preliminary report
  • 2019
  • In: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 24:4, s. 484-490
  • Journal article (peer-reviewed)abstract
    • Major depressive disorder is heritable and a leading cause of disability. Cognitive behavior therapy is an effective treatment for major depression. By quantifying genetic risk scores based on common genetic variants, the aim of this report was to explore the utility of psychiatric and cognitive trait genetic risk scores, for predicting the response of 894 adults with major depressive disorder to cognitive behavior therapy. The participants were recruited in a psychiatric setting, and the primary outcome score was measured using the Montgomery Asberg Depression Rating Scale-Self Rated. Single-nucleotide polymorphism genotyping arrays were used to calculate the genomic risk scores based on large genetic studies of six phenotypes: major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, autism spectrum disorder, intelligence, and educational attainment. Linear mixed-effect models were used to test the relationships between the six genetic risk scores and cognitive behavior therapy outcome. Our analyses yielded one significant interaction effect (B = 0.09, p < 0.001): the autism spectrum disorder genetic risk score correlated with Montgomery Asberg Depression Rating Scale-Self Rated changes during treatment, and the higher the autism spectrum disorder genetic load, the less the depressive symptoms decreased over time. The genetic risk scores for the other psychiatric and cognitive traits were not related to depressive symptom severity or change over time. Our preliminary results indicated, as expected, that the genomics of the response of patients with major depression to cognitive behavior therapy were complex and that future efforts should aim to maximize sample size and limit subject heterogeneity in order to gain a better understanding of the use of genetic risk factors to predict treatment outcome.
  •  
12.
  • Andersson, M, et al. (author)
  • Serotonin transporter availability in adults with autism-a positron emission tomography study
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:5, s. 1647-1658
  • Journal article (peer-reviewed)abstract
    • Impairments in social interaction and communication, in combination with restricted, repetitive behaviors and interests, define the neurodevelopmental diagnosis of autism spectrum disorder (ASD). The biological underpinnings of ASD are not well known, but the hypothesis of serotonin (5-HT) involvement in the neurodevelopment of ASD is one of the longest standing. Reuptake through the 5-HT transporter (5-HTT) is the main pathway decreasing extracellular 5-HT in the brain and a marker for the 5-HT system, but in vivo investigations of the 5-HTT and the 5-HT system in ASD are scarce and so far inconclusive. To quantify possible alterations in the 5-HT system in ASD, we used positron emission tomography and the radioligand [11C]MADAM to measure 5-HTT availability in the brain of 15 adults with ASD and 15 controls. Moreover, we examined correlations between regional 5-HTT availability and behavioral phenotype assessments regarding ASD core symptoms. In the ASD group, we found significantly lower 5-HTT availability in total gray matter, brainstem, and 9 of 18 examined subregions of gray matter. In addition, several correlations between regional 5-HTT availability and social cognitive test performance were found. The results confirm the hypothesis that 5-HTT availability is lower in the brain of adult individuals with ASD, and are consistent with the theory of 5-HT involvement in ASD neurodevelopment. The findings endorse the central role of 5-HT in the physiology of ASD, and confirm the need for a continued investigation of the 5-HT system in order to disentangle the biology of ASD.
  •  
13.
  • Andlauer, TFM, et al. (author)
  • Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:4, s. 1286-1298
  • Journal article (peer-reviewed)abstract
    • Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development.
  •  
14.
  • Andrade-Talavera, Y, et al. (author)
  • Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits
  • 2023
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 28:56, s. 2177-2188
  • Journal article (peer-reviewed)abstract
    • In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Aoun, E. G., et al. (author)
  • A relationship between the aldosterone-mineralocorticoid receptor pathway and alcohol drinking: preliminary translational findings across rats, monkeys and humans
  • 2018
  • In: Molecular Psychiatry. - : NATURE PUBLISHING GROUP. - 1359-4184 .- 1476-5578. ; 23:6, s. 1466-1473
  • Journal article (peer-reviewed)abstract
    • Aldosterone regulates electrolyte and fluid homeostasis through binding to the mineralocorticoid receptors (MRs). Previous work provides evidence for a role of aldosterone in alcohol use disorders (AUDs). We tested the hypothesis that high functional activity of the mineralocorticoid endocrine pathway contributes to vulnerability for AUDs. In Study 1, we investigated the relationship between plasma aldosterone levels, ethanol self-administration and the expression of CYP11B2 and MR (NR3C2) genes in the prefrontal cortex area (PFC) and central nucleus of the amygdala (CeA) in monkeys. Aldosterone significantly increased after 6- and 12-month ethanol self-administration. NR3C2 expression in the CeA was negatively correlated to average ethanol intake during the 12 months. In Study 2, we measured Nr3c2 mRNA levels in the PFC and CeA of dependent and nondependent rats and the correlates with ethanol drinking during acute withdrawal. Low Nr3c2 expression levels in the CeA were significantly associated with increased anxiety-like behavior and compulsive-like drinking in dependent rats. In Study 3, the relationship between plasma aldosterone levels, alcohol drinking and craving was investigated in alcohol-dependent patients. Non-abstinent patients had significantly higher aldosterone levels than abstinent patients. Aldosterone levels positively correlated with the number of drinks consumed, craving and anxiety scores. These findings support a relationship between ethanol drinking and the aldosterone/MR pathway in three different species.
  •  
19.
  • Arber, C., et al. (author)
  • Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta
  • 2020
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 25:11, s. 2919-2931
  • Journal article (peer-reviewed)abstract
    • Familial Alzheimer’s disease (fAD) mutations alter amyloid precursor protein (APP) cleavage by γ-secretase, increasing the proportion of longer amyloidogenic amyloid-β (Aβ) peptides. Using five control induced pluripotent stem cell (iPSC) lines and seven iPSC lines generated from fAD patients, we investigated the effects of mutations on the Aβ secretome in human neurons generated in 2D and 3D. We also analysed matched CSF, post-mortem brain tissue, and iPSCs from the same participant with the APP V717I mutation. All fAD mutation lines demonstrated an increased Aβ42:40 ratio relative to controls, yet displayed varied signatures for Aβ43, Aβ38, and short Aβ fragments. We propose four qualitatively distinct mechanisms behind raised Aβ42:40. (1) APP V717I mutations alter γ-secretase cleavage site preference. Whereas, distinct presenilin 1 (PSEN1) mutations lead to either (2) reduced γ-secretase activity, (3) altered protein stability or (4) reduced PSEN1 maturation, all culminating in reduced γ-secretase carboxypeptidase-like activity. These data support Aβ mechanistic tenets in a human physiological model and substantiate iPSC-neurons for modelling fAD. © 2019, Springer Nature Limited.
  •  
20.
  •  
21.
  • Arentsen, T., et al. (author)
  • The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior
  • 2017
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 22:2, s. 257-266
  • Journal article (peer-reviewed)abstract
    • Recent studies have revealed that the gut microbiota modulates brain development and behavior, but the underlying mechanisms are still poorly understood. Here, we show that bacterial peptidoglycan (PGN) derived from the commensal gut microbiota can be translocated into the brain and sensed by specific pattern-recognition receptors (PRRs) of the innate immune system. Using expression-profiling techniques, we demonstrate that two families of PRRs that specifically detect PGN (that is, PGN-recognition proteins and NOD-like receptors), and the PGN transporter PepT1 are highly expressed in the developing brain during specific windows of postnatal development in both males and females. Moreover, we show that the expression of several PGN-sensing molecules and PepT1 in the developing striatum is sensitive to manipulations of the gut microbiota (that is, germ-free conditions and antibiotic treatment). Finally, we used the PGN-recognition protein 2 (Pglyrp2) knockout mice to examine the potential influence of PGN-sensing molecules on brain development and behavior. We demonstrate that the absence of Pglyrp2 leads to alterations in the expression of the autism risk gene c-Met, and sex-dependent changes in social behavior, similar to mice with manipulated microbiota. These findings suggest that the central activation of PRRs by microbial products could be one of the signaling pathways mediating the communication between the gut microbiota and the developing brain.
  •  
22.
  •  
23.
  • Arroyo-Garcia, LE, et al. (author)
  • Impaired spike-gamma coupling of area CA3 fast-spiking interneurons as the earliest functional impairment in the AppNL-G-F mouse model of Alzheimer's disease
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:10, s. 5557-5567
  • Journal article (peer-reviewed)abstract
    • In Alzheimer’s disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in AppNL-G-F knock-in mice (AppNL-G-F). The aim of the study was to evaluate the amyloidogenic pathology progression in the novel AppNL-G-F mouse model using in vitro electrophysiological network analysis. Using patch clamp of FSNs and pyramidal cells (PCs) with simultaneous gamma oscillation recordings, we compared the activity of the hippocampal network of wild-type mice (WT) and the AppNL-G-F mice at four disease stages (1, 2, 4, and 6 months of age). We found a severe degradation of gamma oscillation power that is independent of, and precedes Aβ plaque formation, and the cognitive impairment reported previously in this animal model. The degradation correlates with increased Aβ1-42 concentration in the brain. Analysis on the cellular level showed an impaired spike-gamma coupling of FSN from 2 months of age that correlates with the degradation of gamma oscillations. From 6 months of age PC firing becomes desynchronized also, correlating with reports in the literature of robust Aβ plaque pathology and cognitive impairment in the AppNL-G-F mice. This study provides evidence that impaired FSN spike-gamma coupling is one of the earliest functional impairment caused by the amyloidogenic pathology progression likely is the main cause for the degradation of gamma oscillations and consequent cognitive impairment. Our data suggests that therapeutic approaches should be aimed at restoring normal FSN spike-gamma coupling and not just removal of Aβ.
  •  
24.
  •  
25.
  • Bang Madsen, Kathrine, et al. (author)
  • In utero exposure to ADHD medication and long-term offspring outcomes
  • 2023
  • In: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 28:4, s. 1739-1746
  • Journal article (peer-reviewed)abstract
    • Attention Deficit Hyperactivity Disorder (ADHD) medication is increasingly being used during pregnancy. Concerns have been raised as to whether ADHD medication has long-term adverse effects on the offspring. The authors investigated whether in utero exposure to ADHD medication was associated with adverse long-term neurodevelopmental and growth outcomes in offspring. The population-based cohort study in the Danish national registers included 1,068,073 liveborn singletons from 1998 to 2015 followed until any developmental diagnosis, death, emigration, or December 31, 2018. Children of mothers who continued ADHD medication (methylphenidate, amphetamine, dexamphetamine, lisdexamphetamine, modafinil, atomoxetine, clonidine) during pregnancy and children of mothers who discontinued ADHD medication before pregnancy were compared using Cox regression. Main outcomes were neurodevelopmental psychiatric disorders, impairments in vision or hearing, epilepsy, seizures, or growth impairment during childhood or adolescence. In total, 898 children were exposed to ADHD medication during pregnancy compared to 1270 children whose mothers discontinued ADHD medication before pregnancy. After adjustment for demographic and psychiatric characteristics of the mother, no increased risk of any offspring developmental disorders was found combined (aHR 0.97, 95% CI 0.81 to 1.17) or for separate subcategories. Similarly, no increased risk was found for any sub-categories of outcomes in the negative control or sibling controlled analyses. Neurodevelopment and growth in offspring do not differ based on antenatal exposure to ADHD medication. These findings provide reassurance for women with ADHD who depend on ADHD medication for daily functioning and who consider continuing medication in pregnancy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 398
Type of publication
journal article (382)
research review (11)
conference paper (5)
Type of content
peer-reviewed (358)
other academic/artistic (40)
Author/Editor
Sullivan, PF (37)
Landén, Mikael, 1966 (26)
Larsson, Henrik, 197 ... (23)
Zetterberg, Henrik, ... (19)
Lichtenstein, P. (18)
Cichon, S (17)
show more...
Sklar, P (16)
Rietschel, M (15)
O'Donovan, MC (15)
Blennow, Kaj, 1958 (14)
Andreassen, OA (14)
Martin, NG (13)
Agartz, I (12)
Djurovic, S (12)
Lichtenstein, Paul (12)
Schalling, M (12)
Breen, G (11)
Jahanshad, N (11)
Corvin, A (11)
Rujescu, D (11)
Mattheisen, M (11)
Jonsson, EG (11)
Ripke, S (11)
Svenningsson, P (10)
Boomsma, DI (10)
Thompson, PM (10)
Nothen, MM (10)
Franke, B (10)
Medland, SE (10)
Hottenga, JJ (9)
Wang, Y. (9)
Bulik, CM (9)
Craddock, N (9)
Lahti, J (9)
Stefansson, H. (9)
Willemsen, G (8)
Stein, DJ (8)
Solmi, Marco (8)
Ehrlich, S (8)
Muller-Myhsok, B (8)
Mors, O (8)
Gillberg, Christophe ... (8)
Tiihonen, J (8)
Palotie, A (8)
Kuja-Halkola, R. (8)
Hultman, C (8)
Stefansson, K (8)
Leboyer, M. (8)
Paunio, T (8)
Mataix-Cols, David (8)
show less...
University
Karolinska Institutet (312)
University of Gothenburg (74)
Uppsala University (46)
Örebro University (27)
Linköping University (21)
Lund University (18)
show more...
Umeå University (14)
Stockholm University (10)
Mid Sweden University (4)
Royal Institute of Technology (3)
Chalmers University of Technology (3)
University West (1)
Mälardalen University (1)
Stockholm School of Economics (1)
Södertörn University (1)
University of Skövde (1)
Linnaeus University (1)
show less...
Language
English (398)
Research subject (UKÄ/SCB)
Medical and Health Sciences (173)
Natural sciences (21)
Social Sciences (13)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view