SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1742 2094 "

Search: L773:1742 2094

  • Result 1-25 of 111
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Benkhoucha, Mahdia, et al. (author)
  • IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis
  • 2012
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9:209
  • Journal article (peer-reviewed)abstract
    • Studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, have shown that B cells markedly influence the course of the disease, although whether their effects are protective or pathological is a matter of debate. EndoS hydrolysis of the IgG glycan has profound effects on IgG effector functions, such as complement activation and Fc receptor binding, suggesting that the enzyme could be used as an immunomodulatory therapeutic agent against IgG-mediated diseases. We demonstrate here that EndoS has a protective effect in myelin oligodendrocyte glycoprotein peptide amino acid 35-55 (MOG(35-55))-induced EAE, a chronic neuroinflammatory demyelinating disorder of the central nervous system (CNS) in which humoral immune responses are thought to play only a minor role. EndoS treatment in chronic MOG(35-55)-EAE did not impair encephalitogenic T cell priming and recruitment into the CNS of mice, consistent with a primary role of EndoS in controlling IgG effector functions. In contrast, reduced EAE severity coincided with poor serum complement activation and deposition within the spinal cord, suggesting that EndoS treatment impairs B cell effector function. These results identify EndoS as a potential therapeutic agent against antibody-mediated CNS autoimmune disorders.
  •  
2.
  • Gram, Magnus, et al. (author)
  • Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation.
  • 2013
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 10:Aug.,6
  • Journal article (peer-reviewed)abstract
    • Cerebral intraventricular hemorrhage (IVH) is a major cause of severe neurodevelopmental impairment in preterm infants. To date, no therapy is available that prevents infants from developing serious neurological disability following IVH. Thus, to develop treatment strategies for IVH, it is essential to characterize the initial sequence of molecular events that leads to brain damage. In this study, we investigated extracellular hemoglobin (Hb) as a causal initiator of inflammation in preterm IVH.
  •  
3.
  • Inacio, Ana, et al. (author)
  • Lack of macrophage migration inhibitory factor in mice does not affect hallmarks of the inflammatory/immune response during the first week after stroke
  • 2011
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 8
  • Journal article (peer-reviewed)abstract
    • Background: Macrophage migration inhibitory factor (MIF) has been proposed to play a detrimental role in stroke. We recently showed that MIF promotes neuronal death and aggravates neurological deficits during the first week after experimental stroke, in mice. Since MIF regulates tissue inflammation, we studied the putative role of MIF in post-stroke inflammation. Methods: We subjected C57BL/6 mice, Mif(-/-)(MIF-KO) or Mif(+/+) (WT), to a transient occlusion of the right middle cerebral artery (tMCAo) or sham-surgery. We studied MIF expression, GFAP expression and the number of CD74-positive cells in the ischemic brain hemisphere 7 days after tMCAo using primarily immunohistochemistry. We determined IFN-gamma, IL-2, IL-4, IL-5, IL-10, IL-12, KC/CXCL-1 and TNF-alpha protein levels in the brain (48 h after surgery) and serum (48 h and 7 days after surgery) by a multiplex immunoassay. Results: We observed that MIF accumulates in neurons and astrocytes of the peri-infarct region, as well as in microglia/macrophages of the infarct core up to 7 days after stroke. Among the inflammatory mediators analyzed, we found a significant increase in cerebral IL-12 and KC levels after tMCAo, in comparison to sham-surgery. Importantly, the deletion of Mif did not significantly affect the levels of the cytokines evaluated, in the brain or serum. Moreover, the spleen weight 48 h and 7 days subsequent to tMCAo was similar in WT and MIF-KO mice. Finally, the extent of GFAP immunoreactivity and the number of MIF receptor (CD74)-positive cells within the ischemic brain hemisphere did not differ significantly between WT and MIF-KO mice subjected to tMCAo. Conclusions: We conclude that MIF does not affect major components of the inflammatory/immune response during the first week after experimental stroke. Based on present and previous evidence, we propose that the deleterious MIF-mediated effects in stroke depend primarily on an intraneuronal and/or interneuronal action.
  •  
4.
  • Maddahi, Aida, et al. (author)
  • Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway.
  • 2010
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 7
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Cerebral ischemia from middle cerebral artery wall (MCA) occlusion results in increased expression of cerebrovascular endothelin and angiotensin receptors and activation of the mitogen-activated protein kinase (MAPK) pathway, as well as reduced local cerebral blood flow and increased levels of pro-inflammatory mediators in the infarct region. In this study, we hypothesised that inhibition of the cerebrovascular inflammatory reaction with a specific MEK1/2 inhibitor (U0126) to block transcription or a combined receptor blockade would reduce infarct size and improve neurological score. METHODS: Rats were subjected to a 2-hours middle cerebral artery occlusion (MCAO) followed by reperfusion for 48 hours. Two groups of treated animals were studied; (i) one group received intraperitoneal administration of a specific MEK1/2 inhibitor (U0126) starting at 0, 6, or 12 hours after the occlusion, and (ii) a second group received two specific receptor antagonists (a combination of the angiotensin AT1 receptor inhibitor Candesartan and the endothelin ETA receptor antagonist ZD1611), given immediately after occlusion. The middle cerebral arteries, microvessels and brain tissue were harvested; and the expressions of tumor necrosis factor-alpha (TNF-alpha), interleukin-1ss (IL-1ss), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and phosphorylated ERK1/2, p38 and JNK were analysed using immunohistochemistry. RESULTS: We observed an infarct volume of 25 +/- 2% of total brain volume, and reduced neurological function 2 days after MCAO followed by 48 hours of recirculation. Immunohistochemistry revealed enhanced expression of TNF-alpha, IL-1ss, IL-6 and iNOS, as well as elevated levels of phosphorylated ERK1/2 in smooth muscle cells of ischemic MCA and in associated intracerebral microvessels. U0126, given intraperitoneal at zero or 6 hours after the ischemic event, but not at 12 hours, reduced the infarct volume (11.7 +/- 2% and 15 +/- 3%, respectively), normalized pERK1/2, and prevented elevation of the expressions of TNF-alpha IL-1ss, IL-6 and iNOS. Combined inhibition of angiotensin AT1 and endothelin ETA receptors decreased the volume of brain damaged (12.3 +/- 3; P < 0.05) but only slightly reduced MCAO-induced enhanced expression of iNOS and cytokines CONCLUSION: The present study shows elevated microvascular expression of TNF-alpha, IL-1ss, IL-6 and iNOS following focal ischemia, and shows that this expression is transcriptionally regulated via the MEK/ERK pathway.
  •  
5.
  • Maddahi, Aida, et al. (author)
  • Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway
  • 2012
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9
  • Journal article (peer-reviewed)abstract
    • Background: Subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. It is suggested that the associated inflammation is mediated through activation of the mitogen-activated protein kinase (MAPK) pathway which plays a crucial role in the pathogenesis of delayed cerebral ischemia after SAH. The aim of this study was first to investigate the timecourse of altered expression of proinflammatory cytokines and matrix metalloproteinase in the cerebral arteries walls following SAH. Secondly, we investigated whether administration of a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, U0126, given at 6 h after SAH prevents activation of the MEK/extracellular signal-regulated kinase 1/2 pathway and the upregulation of cerebrovascular inflammatory mediators and improves neurological function. Methods: SAH was induced in rats by injection of 250 mu l of autologous blood into basal cisterns. U0126 was given intracisternally using two treatment regimens: (A) treatments at 6, 12, 24 and 36 h after SAH and experiments terminated at 48 h after SAH, or (B) treatments at 6, 12, and 24 h after SAH and terminated at 72 h after SAH. Cerebral arteries were harvested and interleukin (IL)-6, IL-1 beta, tumor necrosis factor alpha (TNF)alpha, matrix metalloproteinase (MMP)-9 and phosphorylated ERK1/2 (pERK1/2) levels investigated by immunohistochemistry. Early activation of pERK1/2 was measured by western blot. Functional neurological outcome after SAH was also analyzed. Results: Expression levels of IL-1 beta, IL-6, MMP-9 and pERK1/2 proteins were elevated over time with an early increase at around 6 h and a late peak at 48 to 72 h post-SAH in cerebral arteries. Enhanced expression of TNF alpha in cerebral arteries started at 24 h and increased until 96 h. In addition, SAH induced sensorimotor and spontaneous behavior deficits in the animals. Treatment with U0126 starting at 6 h after SAH prevented activation of MEK-ERK1/2 signaling. Further, U0126 significantly decreased the upregulation of inflammation proteins at 48 and 72 h following SAH and improved neurological function. We found no differences between treatment regimens A and B. Conclusions: These results show that SAH induces early activation of the MEK-ERK1/2 pathway in cerebral artery walls, which is associated with upregulation of proinflammatory cytokines and MMP-9. Inhibition of the MEK-ERK1/2 pathway by U0126 starting at 6 h post-SAH prevented upregulation of cytokines and MMP-9 in cerebral vessels, and improved neurological outcome.
  •  
6.
  • Maddahi, Aida, et al. (author)
  • The role of tumor necrosis factor-alpha and TNF-alpha receptors in cerebral arteries following cerebral ischemia in rat
  • 2011
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 8
  • Journal article (peer-reviewed)abstract
    • Background: Tumour necrosis factor-alpha (TNF-alpha) is a pleiotropic pro-inflammatory cytokine, which is rapidly upregulated in the brain after injury. TNF-alpha acts by binding to its receptors, TNF-R1 (p55) and TNF-R2 (p75), on the cell surface. The aim of this study was first to investigate if there is altered expression of TNF-alpha and TNF-alpha receptors in cerebral artery walls following global or focal ischemia, and after organ culture. Secondly, we asked if the expression was regulated via activation of the MEK-ERK1/2 pathway. Methods: The hypothesis was tested in vivo after subarachnoid hemorrhage (SAH) and middle cerebral artery occlusion (MCAO), and in vitro by organ culture of isolated cerebral arteries. The localization and amount of TNF-alpha, TNF-alpha receptor 1 and 2 proteins were analysed by immunohistochemistry and western blot after 24 and 48 h of organ culture and at 48 h following SAH or MCAO. In addition, cerebral arteries were incubated for 24 or 48 h in the absence or presence of a B-Raf inhibitor (SB386023-b), a MEK-inhibitor (U0126) or an NF-kappa B inhibitor (IMD-0354), and protein expression evaluated. Results: Immunohistochemistry revealed enhanced expression of TNF-alpha, TNF-R1 and TNF-R2 in the walls of cerebral arteries at 48 h after MCAO and SAH compared with control. Co-localization studies showed that TNF-alpha, TNF-R1 and TNF-R2 were primarily localized to the cell membrane and the cytoplasm of the smooth muscle cells (SMC). There was, in addition, some expression of TNF-R2 in the endothelial cells. Immunohistochemistry and western blot analysis showed that these proteins were upregulated after 24 and 48 h in culture, and this upregulation reached an apparent maximum at 48 h of organ culture. Treatment with U0126 significantly reduced the enhanced SMC expression of TNF-a alpha, TNF-R1 and TNF-R2 immunoreactivities after 24 and 48 h of organ culture. The Raf and NF-kappa B inhibitors significantly reduced organ culture induced TNF-alpha expression while they had minor effects on the TNF-alpha receptors. Conclusion: The present study shows that cerebral ischemia and organ culture induce expression of TNF-alpha and its receptors in the walls of cerebral arteries and that upregulation is transcriptionally regulated via the MEK/ERK pathway.
  •  
7.
  • Markus, Tina, et al. (author)
  • beta-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices
  • 2010
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 7
  • Journal article (peer-reviewed)abstract
    • Background: Inflammation acting in synergy with brain ischemia aggravates perinatal ischemic brain damage. The sensitizing effect of pro-inflammatory exposure prior to hypoxia is dependent on signaling by TNF-alpha through TNF receptor (TNFR) 1. Adrenoceptor (AR) activation is known to modulate the immune response and synaptic transmission. The possible protective effect of (alpha) over tilde and (beta) over tilde AR activation against neuronal damage caused by tissue ischemia and inflammation, acting in concert, was evaluated in murine hippocampal organotypic slices treated with lipopolysaccharide (LPS) and subsequently subjected to oxygen-glucose deprivation (OGD). Method: Hippocampal slices from mice were obtained at P6, and were grown in vitro for 9 days on nitrocellulose membranes. Slices were treated with beta 1(dobutamine)-, beta 2(terbutaline)-, alpha 1(phenylephrine)- and alpha 2(clonidine)-AR agonists (5 and 50 mu M, respectively) during LPS (1 mu g/mL, 24 h) -exposure followed by exposure to OGD (15 min) in a hypoxic chamber. Cell death in the slice CA1 region was assessed by propidium iodide staining of dead cells. Results: Exposure to LPS + OGD caused extensive cell death from 4 up to 48 h after reoxygenation. Co-incubation with beta 1-agonist (50 mu M) during LPS exposure before OGD conferred complete protection from cell death (P < 0.001) whereas the beta 2-agonist (50 mu M) was partially protective (p < 0.01). Phenylephrine was weakly protective while no protection was attained by clonidine. Exposure to both beta 1-and beta 2-agonist during LPS exposure decreased the levels of secreted TNF-alpha, IL-6 and monocyte chemoattractant protein-1 and prevented microglia activation in the slices. Dobutamine remained neuroprotective in slices exposed to pure OGD as well as in TNFR1(-/-) and TNFR2(-/-) slices exposed to LPS followed by OGD. Conclusions: Our data demonstrate that activation of both beta 1-and beta 2-receptors is neuroprotective and may offer mechanistic insights valuable for development of neuro-protective strategies in neonates.
  •  
8.
  • Waldsee, Roya, et al. (author)
  • CaMKII and MEK1/2 inhibition time-dependently modify inflammatory signaling in rat cerebral arteries during organ culture.
  • 2014
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Cerebral ischemia induces transcriptional upregulation of inflammatory genes in the brain parenchyma and in cerebral arteries, thereby contributing to the infarct development. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CaMKII) II and extracellular signal-regulated kinase1/2 (ERK1/2) on inflammatory mediators in rat cerebral arteries using organ culture as a method for inducing ischemic-like vascular wall changes.
  •  
9.
  • Henningsson, Anna J, et al. (author)
  • Indications of Th1 and Th17 responses in cerebrospinal fluid from patients with Lyme neuroborreliosis : a large retrospective study
  • 2011
  • In: Journal of Neuroinflammation. - : BioMed Central. - 1742-2094. ; 8:36
  • Journal article (peer-reviewed)abstract
    • Background: Previous studies indicate that successful resolution of Lyme neuroborreliosis (NB) is associated with a strong T helper (Th) 1-type cytokine response in the cerebrospinal fluid (CSF) followed by a down-regulating Th2 response, whereas the role of the recently discovered Th17 cytokine response is unknown. Methods: To investigate the relative contribution of different Th associated cytokine/chemokine responses, we used a multiple bead array to measure the levels of CXCL10 (Th1 marker), CCL22 (Th2 marker), IL-17 (Th17 marker) and CXCL8 (general inflammation marker), in serum and in CSF from untreated patients with confirmed NB (n = 133), and non-NB patients (n = 96), and related the findings to clinical data. Samples from patients with possible early NB (n = 15) and possible late NB (n = 19) were also analysed, as well as samples from an additional control group with orthopaedic patients (n = 17), where CSF was obtained at spinal anaesthesia. Results: The most prominent differences across groups were found in the CSF. IL-17 was elevated in CSF in 49% of the patients with confirmed NB, but was not detectable in the other groups. Patients with confirmed NB and possible early NB had significantly higher CSF levels of CXCL10, CCL22 and CXCL8 compared to both the non-NB group and the control group (p andlt; 0.0001 for all comparisons). Patients in the early NB group, showing a short duration of symptoms, had lower CCL22 levels in CSF than did the confirmed NB group (p andlt; 0.0001). Furthermore, patients within the confirmed NB group showing a duration of symptoms andlt; 2 weeks, tended to have lower CCL22 levels in CSF than did those with longer symptom duration (p = 0.023). Cytokine/chemokine levels were not correlated with clinical parameters or to levels of anti-Borrelia-antibodies. Conclusion: Our results support the notion that early NB is dominated by a Th1-type response, eventually accompanied by a Th2 response. Interestingly, IL-17 was increased exclusively in CSF from patients with confirmed NB, suggesting a hitherto unknown role for Th17 in NB. However, for conclusive evidence, future prospective studies are needed.
  •  
10.
  • Bi, D., et al. (author)
  • The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy
  • 2014
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 11
  • Journal article (peer-reviewed)abstract
    • Background: The relationship between genetic factors and the development of cerebral palsy (CP) has recently attracted much attention. Polymorphisms in the genes encoding proinflammatory cytokines have been shown to be associated with susceptibility to perinatal brain injury and development of CP. Interleukin-6 (IL-6) is a proinflammatory cytokine that plays a pivotal role in neonatal brain injury, but conflicting results have been reported regarding the association between IL-6 single nucleotide polymorphisms (SNPs) and CP. The purpose of this study was to analyze IL-6 gene polymorphisms and protein expression and to explore the role of IL-6 in the Chinese CP population. Methods: A total of 753 healthy controls and 713 CP patients were studied to detect the presence of five SNPs (rs1800796, rs2069837, rs2066992, rs2069840, and rs10242595) in the IL-6 locus. Of these, 77 healthy controls and 87 CP patients were selected for measurement of plasma IL-6 by Luminex assay. The SHEsis program was used to analyze the genotyping data. For all comparisons; multiple testing on each individual SNP was corrected by the SNPSpD program. Results: There were no differences in allele or genotype frequencies between the overall CP patients and controls among the five genetic polymorphisms. However, subgroup analysis found significant sex-related differences in allele and genotype frequencies. Differences were found between spastic CP and controls in males for rs2069837; between CP with periventricular leukomalacia and controls in males for rs1800796 and rs2066992; and between term CP and controls in males for rs2069837. Plasma IL-6 levels were higher in CP patients than in the controls, and this difference was more robust in full-term male spastic CP patients. Furthermore, the genotype has an effect on IL-6 synthesis. Conclusions: The influence of IL-6 gene polymorphisms on IL-6 synthesis and the susceptibility to CP is related to sex and gestational age.
  •  
11.
  • Bromander, Sara, et al. (author)
  • Changes in serum and cerebrospinal fluid cytokines in response to non-neurological surgery: an observational study.
  • 2012
  • In: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: Background: Surgery launches an inflammatory reaction in the body, as seen through increased peripheral levels of cytokines and cortisol. However, less is known about perioperative inflammatory changes in the central nervous system (CNS). Our aim was to compare inflammatory markers in serum and cerebrospinal fluid (CSF) before and after surgery and evaluate their association with measures of blood–brain barrier (BBB) integrity. Methods: Thirty-five patients undergoing knee arthroplastic surgery with spinal anesthesia had CSF and serum samples drawn before, after and on the morning following surgery. Cytokines and albumin in serum and CSF and cortisol in CSF were assessed at all three points. Results: Cytokines and cortisol were significantly increased in serum and CSF after surgery (Ps <0.01) and CSF increases were greater than in serum. Ten individuals had an increased cytokine response and significantly higher CSF/serum albumin ratios (Ps <0.01), five of whom had albumin ratios in the pathological range (>11.8). Serum and CSF levels of cytokines were unrelated, but there were strong correlations between CSF IL-2, IL-10 and IL-13, and albumin ratios (Ps <0.05) following surgery. Conclusion: Cytokine increases in the CNS were substantially greater than in serum, indicating that the CNS inflammatory system is activated during peripheral surgery and may be regulated separately from that in the peripheral body. CSF cytokine increase may indicate sensitivity to trauma and is linked to BBB macromolecular permeability.
  •  
12.
  • Ekmark-Lewén, Sara, et al. (author)
  • Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes
  • 2013
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 10:1, s. 44-
  • Journal article (peer-reviewed)abstract
    • BackgroundDiffuse traumatic axonal injury (TAI), a common consequence of traumatic brain injury, is associated with high morbidity and mortality. Inflammatory processes may play an important role in the pathophysiology of TAI. In the murine central fluid percussion injury (cFPI) TAI model, the neuroinflammatory and astroglial response and behavioral changes are unknown.MethodsTwenty cFPI-injured and nine sham-injured mice were used, and the neuroinflammatory and astroglial response was evaluated by immunohistochemistry at 1, 3 and 7 days post-injury. The multivariate concentric square field test (MCSF) was used to compare complex behavioral changes in mice subjected to cFPI (n = 16) or sham injury (n = 10). Data was analyzed using non-parametric statistics and principal component analysis (MCSF data).ResultsAt all post-injury time points, beta-amyloid precursor protein (beta-APP) immunoreactivity revealed widespread bilateral axonal injury and IgG immunostaining showed increased blood--brain barrier permeability. Using vimentin and glial fibrillary acidic protein (GFAP) immunohistochemistry, glial cell reactivity was observed in cortical regions and important white matter tracts peaking at three days post-injury. Only vimentin was increased post-injury in the internal capsule and only GFAP in the thalamus. Compared to sham-injured controls, an increased number of activated microglia (MAC-2), infiltrating neutrophils (GR-1) and T-cells (CD3) appearing one day after TAI (P<0.05 for all cell types) was observed in subcortical white matter. In the MCSF, the behavioral patterns including general activity and exploratory behavior differed between cFPI mice and sham-injured controls.ConclusionsTraumatic axonal injury in mice resulted in marked bilateral astroglial and neuroinflammatory responses and complex behavioral changes. The cFPI model in mice appears suitable for the study of injury mechanisms, including neuroinflammation, and the development of treatments targeting traumatic axonal injury.
  •  
13.
  • Fleiss, Bobbi, et al. (author)
  • Neuroprotection by the histone deacetylase inhibitor trichostatin A in a model of lipopolysaccharide-sensitised neonatal hypoxic-ischaemic brain injury.
  • 2012
  • In: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9:1
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: BACKGROUND: Perinatal brain injury is complex and often associated with both inflammation and hypoxia-ischaemia (HI). In adult inflammatory brain injury models, therapies to increase acetylation are efficacious in reducing inflammation and cerebral injury. Our aim in the present study was to examine the neuropathological and functional effects of the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) in a model of neonatal lipopolysaccharide (LPS)-sensitised HI. We hypothesised that, by decreasing inflammation, TSA would improve injury and behavioural outcome. Furthermore, TSA's effects on oligodendrocyte development, which is acetylation-dependent, were investigated. METHODS: On postnatal day 8 (P8), male and female mice were exposed to LPS together with or without TSA. On P9 (14 hours after LPS), mice were exposed to HI (50 minutes at 10% O2). Neuropathology was assessed at 24 hours, 5 days and 27 days post-LPS/HI via immunohistochemistry and/or Western blot analysis for markers of grey matter (microtubule-associated protein 2), white matter (myelin basic protein) and cell death (activated caspase-3). Effects of TSA on LPS or LPS/HI-induced inflammation (cytokines and microglia number) were assessed by Luminex assay and immunohistochemistry. Expression of acetylation-dependent oligodendrocyte maturational corepressors was assessed with quantitative PCR 6 hours after LPS and at 24 hours and 27 days post-LPS/HI. Animal behaviour was monitored with the open-field and trace fear-conditioning paradigms at 25 days post-LPS/HI to identify functional implications of changes in neuropathology associated with TSA treatment. RESULTS: TSA increased acetylation in females after LPS exposure, but not in males. Also only in females, TSA reduced grey matter and white matter injury at 5 days post-LPS/HI. TSA treatment altered animal behaviour in the open field and improved learning in the fear-conditioning test in females compared with LPS/HI only females at 25 days post-HI. None of the inflammatory mechanisms assessed that are known to mediate neuroprotection by HDACi in adults correlated with improved outcome in TSA-treated neonatal females. Oligodendrocyte maturation was not different between the LPS-only and LPS + TSA-treated mice before or after exposure to HI. CONCLUSIONS: Hyperacetylation with TSA is neuroprotective in the female neonatal mouse following LPS/HI and correlates with improved learning long-term. TSA appears to exert neuroprotection via mechanisms unique to the neonate. Deciphering the effects of age, sex and inflammatory sensitisation in the cerebral response to HDACi is key to furthering the potential of hyperacetylation as a viable neuroprotectant. TSA did not impair oligodendrocyte maturation, which increases the possible clinical relevance of this strategy.
  •  
14.
  • Fransson, Moa, et al. (author)
  • CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery
  • 2012
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9, s. 112-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND:Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naive CD4 cells and demonstrate their efficacy in the EAE model.METHODSCD4+T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery.RESULTSThe engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptomfree mice were echallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs.CONCLUSIONCNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms.
  •  
15.
  • Gitik, Miri, et al. (author)
  • Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPalpha (signal regulatory protein-alpha) on phagocytes
  • 2011
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 8:1, s. 24-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3), which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPalpha (signal regulatory protein-alpha) on macrophages and microglia.METHODS: CD47 and SIRPalpha expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA.RESULTS: We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPalpha and further confirm that microglia and macrophages express both CD47 and SIRPalpha. Thus, CD47 on myelin can bind to and subsequently activate SIRPalpha on phagocytes, a prerequisite for CD47/SIRPalpha-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPalpha on phagocytes is blocked by mAbs against CD47 and SIRPalpha, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPalpha binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPalpha levels (SIRPalpha-KD) in phagocytes by lentiviral infection with SIRPalpha-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/-) is not. Thus, myelin CD47 produces SIRPalpha-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes. Unexpectedly, phagocytosis of CD47-/- myelin by SIRPalpha-KD phagocytes, which is not altered from normal when tested in serum-free medium, is augmented when serum is present. Therefore, both myelin CD47 and serum may each promote SIRPalpha-dependent down-regulation of myelin phagocytosis irrespective of the other.CONCLUSIONS: Myelin down-regulates its own phagocytosis through CD47-SIRPalpha interactions. It may further be argued that CD47 functions normally as a marker of "self" that helps protect intact myelin and myelin-forming oligodendrocytes and Schwann cells from activated microglia and macrophages. However, the very same mechanism that impedes phagocytosis may turn disadvantageous when rapid clearance of degenerated myelin is helpful.
  •  
16.
  • Kappe, Camilla, et al. (author)
  • GLP 1 secretion by microglial cells and decreased cns expression in obesity
  • 2012
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9, s. 276-
  • Journal article (peer-reviewed)abstract
    • Background: Type 2 diabetes (T2D) is a strong risk factor for developing neurodegenerative pathologies. T2D patients have a deficiency in the intestinal incretin hormone GLP-1, which has been shown to exert neuroprotective and anti-inflammatory properties in the brain. Methods: Here we investigate potential sources of GLP-1 in the CNS and the effect of diabetic conditions on the proglucagon mRNA expression in the CNS. The obese mouse model ob/ob, characterized by its high levels of free fatty acids, and the microglia cell line BV-2 were used as models. mRNA expression and protein secretion were analyzed by qPCR, immunofluorescence and ELISA. Results: We show evidence for microglia as a central source of GLP-1 secretion. Furthermore, we observed that expression and secretion are stimulated by cAMP and dependent on microglial activation state. We also show that insulin-resistant conditions reduce the central mRNA expression of proglucagon. Conclusion: The findings that microglial mRNA expression of proglucagon and GLP-1 protein expression are affected by high levels of free fatty acids and that both mRNA expression levels of proglucagon and secretion levels of GLP-1 are affected by inflammatory stimuli could be of pathogenic importance for the premature neurodegeneration and cognitive decline commonly seen in T2D patients, and they may also be harnessed to advantage in therapeutic efforts to prevent or treat such disorders.
  •  
17.
  • Kenne, Ellinor, et al. (author)
  • Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice
  • 2012
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9, s. 17-
  • Journal article (peer-reviewed)abstract
    • Background: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods: In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results: Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion: Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.
  •  
18.
  • Lindblom, Rickard P F, et al. (author)
  • Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury.
  • 2013
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 10
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection.METHODS: The inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains.RESULTS: Global expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury.CONCLUSIONS: In summary, we demonstrate that a genetic variation in Aplec occurring among inbred strains regulates both survival of axotomized motor neurons and the degree of lymphocyte infiltration. These results demonstrate a hitherto unknown role for CLECs for intercellular communication that occurs after damage to the nervous system, which is relevant for neuronal survival.
  •  
19.
  • Mestre, Leyre, et al. (author)
  • Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors.
  • 2011
  • In: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 8:1
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: BACKGROUND: VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB) that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs) in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA) in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV) infection of brain endothelial cells using in vitro and in vivo approaches. METHODS: i) in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii) in vivo: CB1 receptor deficient mice (Cnr1-/-) infected with TMEV were treated with the AEA uptake inhibitor UCM707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. RESULTS: Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-), the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor exacerbated neuroinflammation. CONCLUSIONS: Our results suggest that CB1 receptor dependent VCAM-1 inhibition is a novel mechanism for AEA-reduced leukocyte transmigration and contribute to a better understanding of the mechanisms underlying the beneficial role of endocannabinoid system in the Theiler's virus model of MS.
  •  
20.
  • Ramberg, Veronica, et al. (author)
  • The CCAAT/enhancer binding protein (C/EBP) δ is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid-β peptide
  • 2011
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 8, s. 34-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND:The transcription factors CCAAT/enhancer binding proteins (C/EBP) α, β and δ have been shown to be expressed in brain and to be involved in regulation of inflammatory genes in concert with nuclear factor κB (NF-κB). In general, C/EBPα is down-regulated, whereas both C/EBPβ and δ are up-regulated in response to inflammatory stimuli. In Alzheimer's disease (AD) one of the hallmarks is chronic neuroinflammation mediated by astrocytes and microglial cells, most likely induced by the formation of amyloid-β (Aβ) deposits. The inflammatory response in AD has been ascribed both beneficial and detrimental roles. It is therefore important to delineate the inflammatory mediators and signaling pathways affected by Aβ deposits with the aim of defining new therapeutic targets.METHODS:Here we have investigated the effects of Aβ on expression of C/EBP family members with a focus on C/EBPδ in rat primary astro-microglial cultures and in a transgenic mouse model with high levels of fibrillar Aβ deposits (tg-ArcSwe) by western blot analysis. Effects on DNA binding activity were analyzed by electrophoretic mobility shift assay. Cross-talk between C/EBPδ and NF-κB was investigated by analyzing binding to a κB site using a biotin streptavidin-agarose pull-down assay.RESULTS:We show that exposure to fibril-enriched, but not oligomer-enriched, preparations of Aβ inhibit up-regulation of C/EBPδ expression in interleukin-1β-activated glial cultures. Furthermore, we observed that, in aged transgenic mice, C/EBPα was significantly down-regulated and C/EBPβ was significantly up-regulated. C/EBPδ, on the other hand, was selectively down-regulated in the forebrain, a part of the brain showing high levels of fibrillar Aβ deposits. In contrast, no difference in expression levels of C/EBPδ between wild type and transgenic mice was detected in the relatively spared hindbrain. Finally, we show that interleukin-1β-induced C/EBPδ DNA binding activity to both C/EBP and κB sites is abolished after exposure to Aβ.CONCLUSIONS:These data suggest that both expression and function of C/EBPδ are dysregulated in Alzheimer's disease. C/EBPδ seems to be differently regulated in response to different conformations of Aβ. We propose that Aβ induces an imbalance between NF-κB and C/EBP transcription factors that may result in abnormal responses to inflammatory stimuli.
  •  
21.
  • Rönnbäck, Lars, 1951, et al. (author)
  • On the potential role of glutamate transport in mental fatigue.
  • 2004
  • In: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 1:1
  • Journal article (peer-reviewed)abstract
    • Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms.It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL)-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-alpha, IL-1beta and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+) in humans suffering from mental fatigue. At present, this is not possible for technical reasons. Therefore, more knowledge of neuronal-glial signaling in in vitro systems and animal experiments is important.In summary, we provide a hypothetic explanation for a general neurobiological mechanism, at the cellular level, behind one of our most common symptoms during neuroinflammation and other long-term disorders of brain function. Understanding pathophysiological mechanisms of mental fatigue could result in better treatment.
  •  
22.
  •  
23.
  • Stridh, Linnea, 1983, et al. (author)
  • Regulation of Toll-like receptor 1 and -2 in neonatal mouse brain after hypoxia-ischemia.
  • 2011
  • In: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 8:1
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: BACKGROUND: Hypoxic-ischemic (HI) brain injury remains a major problem in newborns, resulting in increased risk of neurological disorders. Neonatal HI triggers a broad inflammatory reaction in the brain, including activation of the innate immune system. Toll-like receptors (TLRs), which are key components of the innate immune system, are believed to play a role in adult cerebral ischemic injury. The expression of TLRs in the neonatal brain and their regulation after HI is unknown. METHODS: Wild type C57BL/6, TLR 1 knockout (KO) and TLR 2 KO mice were subjected to HI at postnatal day 9 and sacrificed 30 min, 6h, 24h or 5 days after HI. TLR mRNA expression was determined by RT-qPCR and protein and cell type localisation by immunohistochemistry (IHC). To evaluate brain injury, infarct volume was measured in the injured hemisphere. RESULTS: mRNA expression was detected for all investigated TLRs (TLR1-9), both in normal and HI exposed brains. After HI, TLR-1 was down-regulated at 30 min and up-regulated at 6h and 24h. TLR-2 was up-regulated at 6h and 24h, and TLR-7 at 24h. Both TLR-5 and TLR-8 were down-regulated at 24h and 30 min respectively. IHC showed an increase of TLR-1 in neurons in the ipsilateral hemisphere after HI. TLR-2 was constitutively expressed in astrocytes and in a population of neurons in the paraventricular nucleus in the hypothalamus. No changes in expression were detected following HI. Following HI, TLR-2 KO mice, but not TLR-1 KO, showed a decreased infarct volume compared to wild type (p= 0.0051). CONCLUSIONS: This study demonstrates that TLRs are regulated after HI in the neonatal brain. TLR-1 protein was up-regulated in injured areas of the brain but TLR-1 KO animals were not protected from HI. In contrast, TLR-2 was constitutively expressed in the brain and TLR-2 deficiency reduced HI injury. These data suggest that TLR-2, but not TLR-1, plays a role in neonatal HI brain injury.
  •  
24.
  • Vardjan, N., et al. (author)
  • IFN-gamma-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments
  • 2012
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9:Article Number: 144
  • Journal article (peer-reviewed)abstract
    • Background: In immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-gamma (IFN-gamma) can express major histocompatibility complex (MHC) class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF) proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT) astrocytes and in astrocytes devoid of IFs. Methods: The identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-gamma activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor(546)-dextran labeling of late endosomes/lysosomes in IFN-gamma treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software. Results: Confocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-gamma induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor(546)-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-gamma-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-gamma- treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-gamma-induced increase in the mobility of MHC class II compartments is IF-dependent. Conclusions: Since reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a controlled manner to CNS inflammation.
  •  
25.
  • Yilmaz, Aylin, 1974, et al. (author)
  • Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy.
  • 2013
  • In: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 10:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. METHODS: CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. RESULTS: Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. CONCLUSIONS: After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 111
Type of publication
journal article (111)
Type of content
peer-reviewed (110)
other academic/artistic (1)
Author/Editor
Zetterberg, Henrik, ... (15)
Blennow, Kaj, 1958 (12)
Mallard, Carina, 196 ... (9)
Deierborg, Tomas (7)
Edvinsson, Lars (5)
Ley, David (5)
show more...
Wang, Xiaoyang, 1965 (5)
Ernerudh, Jan (4)
Hagberg, Henrik, 195 ... (4)
Gram, Magnus (4)
Överby, Anna K. (4)
aut (3)
Hagberg, Lars, 1951 (3)
Gisslén, Magnus, 196 ... (3)
Piehl, Fredrik (3)
Cinthio, Magnus (3)
Åkerström, Bo (3)
Hansson, Stefan (3)
Ashton, Nicholas J. (3)
Albertsson, Anna-Maj (3)
Zhang, Xiaoli (3)
Zhu, J. (2)
Aarsland, D (2)
Rönnbäck, Lars, 1951 (2)
Hansson, Elisabeth, ... (2)
Fuchs, D. (2)
Olsson, T (2)
Marklund, Niklas (2)
Ingelsson, Martin (2)
Lannfelt, Lars (2)
Gilthorpe, Jonathan ... (2)
Essand, Magnus (2)
Iverfeldt, Kerstin (2)
Aeinehband, Shahin (2)
Khademi, Mohsen (2)
Lindblom, Rickard P ... (2)
Al Nimer, Faiez (2)
Zhou, K. (2)
Agyemang, Alex Aduse ... (2)
Holmqvist, Bo (2)
Dahle, Charlotte (2)
Hillered, Lars (2)
Ahnstedt, Hilda (2)
Waldsee, Roya (2)
Lindskog, Maria (2)
Lindqvist, Richard (2)
Karikari, Thomas (2)
Bi, Dan (2)
Qiao, Lili (2)
Cantor, Harvey (2)
show less...
University
University of Gothenburg (39)
Karolinska Institutet (39)
Lund University (26)
Uppsala University (17)
Linköping University (7)
Umeå University (6)
show more...
Stockholm University (3)
Linnaeus University (2)
Swedish University of Agricultural Sciences (2)
Royal Institute of Technology (1)
Luleå University of Technology (1)
University of Gävle (1)
Örebro University (1)
show less...
Language
English (111)
Research subject (UKÄ/SCB)
Medical and Health Sciences (88)
Natural sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view