SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1755 098X OR L773:1755 0998 "

Search: L773:1755 098X OR L773:1755 0998

  • Result 1-25 of 128
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bensch, Staffan, et al. (author)
  • Contaminations contaminate common databases
  • 2021
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 21:2, s. 355-362
  • Journal article (peer-reviewed)abstract
    • The polymerase chain reaction (PCR) is a very powerful method to detect and identify pathogens. The high sensitivity of the method, however, comes with a cost; any of the millions of artificial DNA copies generated by PCR can serve as a template in a following experiment. If not identified as contaminations, these may result in erroneous conclusions on the occurrence of the pathogen, thereby inflating estimates of host range and geographic distribution. In the present paper, we evaluate whether several published records of avian haemosporidian parasites, in either unusual host species or geographical regions, might stem from PCR contaminations rather than novel biological findings. The detailed descriptions of these cases are shedding light upon the steps in the work process that might lead to PCR contaminations. By increasing the awareness of this problem, it will aid in developing procedures that keep these to a minimum. The examples in the present paper are from haemosporidians of birds, however the problem of contaminations and suggested actions should apply generally to all kinds of PCR-based identifications, not just of parasites and pathogens.
  •  
2.
  • Hagen, Ingerid J., et al. (author)
  • A genome-wide linkage map for the house sparrow (Passer domesticus) provides insights into the evolutionary history of the avian genome
  • 2020
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 20:2, s. 544-559
  • Journal article (peer-reviewed)abstract
    • The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.
  •  
3.
  • Keighley, Xénia, et al. (author)
  • Predicting sample success for large-scale ancient DNA studies on marine mammals
  • 2021
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 21:4, s. 1149-1166
  • Journal article (peer-reviewed)abstract
    • In recent years, non-human ancient DNA studies have begun to focus on larger sample sizes and whole genomes, offering the potential to reveal exciting and hitherto unknown answers to ongoing biological and archaeological questions. However, one major limitation to the feasibility of such studies is the substantial financial and time investments still required during sample screening, due to uncertainty regarding successful sample selection. This study investigates the effect of a wide range of sample properties including latitude, sample age, skeletal element, collagen preservation, and context on endogenous content and DNA damage profiles for 317 ancient and historic pinnipedsamples collected from across the North Atlantic. Using generalised linear and mixed-effectmodels, we found that a range of factors affected DNA preservation within each of the species under consideration. The most important findings were that endogenous content varied significantly according to context, the type of skeletal element, the collagen content and collection year. There also appears to be an effect of the sample’s geographic origin, with samples from the Arcticgenerally showing higher endogenous content and lower damage rates. Both latitude and sample age were found to have significant relationships with damage levels, but only for walrus samples. Sex, ontogenetic age and extraction material preparation were not found to have any significantrelationship with DNA preservation. Overall, the skeletal element and sample context were found to be the most influential factors and should therefore be considered when selecting samples for large-scale ancient genome studies.
  •  
4.
  • Marquina, Daniel, et al. (author)
  • Establishing arthropod community composition using metabarcoding : Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches
  • 2019
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 19:6, s. 1516-1530
  • Journal article (peer-reviewed)abstract
    • DNA metabarcoding allows the analysis of insect communities faster and more efficiently than ever before. However, metabarcoding can be conducted through several approaches, and the consistency of results across methods has rarely been studied. We compare the results obtained by DNA metabarcoding of the same communities using two different markers - COI and 16S - and three different sampling methods: (a) homogenized Malaise trap samples (homogenate), (b) preservative ethanol from the same samples, and (c) soil samples. Our results indicate that COI and 16S offer partly complementary information on Malaise trap samples, with each marker detecting a significant number of species not detected by the other. Different sampling methods offer highly divergent estimates of community composition. The community recovered from preservative ethanol of Malaise trap samples is significantly different from that recovered from homogenate. Small and weakly sclerotized insects tend to be overrepresented in ethanol while strong and large taxa are overrepresented in homogenate. For soil samples, highly degenerate COI primers pick up large amounts of nontarget DNA and only 16S provides adequate analyses of insect diversity. However, even with 16S, very little overlap in molecular operational taxonomic unit (MOTU) content was found between the trap and the soil samples. Our results demonstrate that none of the tested sampling approaches is satisfactory on its own. For instance, DNA extraction from preservative ethanol is not a valid replacement for destructive bulk extraction but a complement. In future metabarcoding studies, both should ideally be used together to achieve comprehensive representation of the target community.
  •  
5.
  • Arias, M. C., et al. (author)
  • Permanent Genetic Resources added to Molecular Ecology Resources Database 1 February 2013-31 March 2013
  • 2013
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 13:4, s. 760-762
  • Journal article (peer-reviewed)abstract
    • This article documents the addition of 142 microsatellite marker loci to the Molecular Ecology Resources database. Loci were developed for the following species: Agriophyllum squarrosum, Amazilia cyanocephala, Batillaria attramentaria, Fungal strain CTeY1 (Ascomycota), Gadopsis marmoratus, Juniperus phoenicea subsp. turbinata, Liriomyza sativae, Lupinus polyphyllus, Metschnikowia reukaufii, Puccinia striiformis and Xylocopa grisescens. These loci were cross-tested on the following species: Amazilia beryllina, Amazilia candida, Amazilia rutila, Amazilia tzacatl, Amazilia violiceps, Amazilia yucatanensis, Campylopterus curvipennis, Cynanthus sordidus, Hylocharis leucotis, Juniperus brevifolia, Juniperus cedrus, Juniperus osteosperma, Juniperus oxycedrus, Juniperus thurifera, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza huidobrensis and Liriomyza trifolii.
  •  
6.
  • Hansson, Bengt, et al. (author)
  • Contrasting results from GWAS and QTL mapping on wing length in great reed warblers
  • 2018
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 18:4, s. 867-876
  • Journal article (peer-reviewed)abstract
    • A major goal in evolutionary biology is to understand the genetic basis of adaptive traits. In migratory birds, wing morphology is such a trait. Our previous work on the great reed warbler (Acrocephalus arundinaceus) shows that wing length is highly heritable and under sexually antagonistic selection. Moreover, a quantitative trait locus (QTL) mapping analysis detected a pronounced QTL for wing length on chromosome 2, suggesting that wing morphology is partly controlled by genes with large effects. Here, we re-evaluate the genetic basis of wing length in great reed warblers using a genomewide association study (GWAS) approach based on restriction site-associated DNA sequencing (RADseq) data. We use GWAS models that account for relatedness between individuals and include covariates (sex, age and tarsus length). The resulting association landscape was flat with no peaks on chromosome 2 or elsewhere, which is in line with expectations for polygenic traits. Analysis of the distribution of p-values did not reveal biases, and the inflation factor was low. Effect sizes were however not uniformly distributed on some chromosomes, and the Z chromosome had weaker associations than autosomes. The level of linkage disequilibrium (LD) in the population decayed to background levels within c. 1 kbp. There could be several reasons to why our QTL study and GWAS gave contrasting results including differences in how associations are modelled (cosegregation in pedigree vs. LD associations), how covariates are accounted for in the models, type of marker used (multi- vs. biallelic), difference in power or a combination of these. Our study highlights that the genetic architecture even of highly heritable traits is difficult to characterize in wild populations.
  •  
7.
  • Roved, Jacob, et al. (author)
  • MHCtools - an R package for MHC high-throughput sequencing data : Genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms
  • 2022
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 22:7, s. 2775-2792
  • Journal article (peer-reviewed)abstract
    • The major histocompatibility complex (MHC) plays a central role in the vertebrate adaptive immune system and has been of long-term interest in evolutionary biology. While several protocols have been developed for MHC genotyping, there is a lack of transparent and standardized tools for downstream analysis of MHC data. Here, we present the r package mhctools and demonstrate the use of its functions to (i) assist accurate MHC genotyping from high-throughput amplicon-sequencing data, (ii) infer functional MHC supertypes using bootstrapped clustering analysis, (iii) identify segregating MHC haplotypes from family data, and (iv) analyse functional and genetic distances between MHC sequences. We employed mhctools to analyse MHC class I (MHC-I) amplicon data of 559 great reed warblers (Acrocephalus arundinaceus). We identified 390 MHC-I alleles which clustered into 14 functional supertypes. A phylogenetic analysis and analyses of positive selection suggested that the MHC-I alleles belong to several distinct functional groups. We furthermore identified 107 segregating haplotypes among 116 families, and found substantial variation in diversity with 4-21 MHC-I alleles and 3-13 MHC-I supertypes per haplotype. Finally, we show that the great reed warbler haplotypes harboured combinations of MHC-I supertypes with greater functional divergence than observed in simulated populations of possible haplotypes, a result that is in accordance with the divergent allele advantage hypothesis. Our study demonstrates the power of mhctools to support genotyping and analysis of MHC in non-model species, which we hope will encourage broad implementation among researchers in MHC genetics and evolution.
  •  
8.
  • Videvall, Elin, et al. (author)
  • Measuring the gut microbiome in birds : Comparison of faecal and cloacal sampling
  • 2018
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 18:3, s. 424-434
  • Journal article (peer-reviewed)abstract
    • The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high-throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies.
  •  
9.
  • Westerdahl, Helena, et al. (author)
  • The genomic architecture of the passerine MHC region : high repeat content and contrasting evolutionary histories of single copy and tandemly duplicated MHC genes
  • 2022
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 22:6, s. 2379-2395
  • Journal article (peer-reviewed)abstract
    • The major histocompatibility complex (MHC) is of central importance to the immune system, and an optimal MHC diversity is believed to maximize pathogen elimination. Birds show substantial variation in MHC diversity, ranging from few genes in most bird orders to very many genes in passerines. Our understanding of the evolutionary trajectories of the MHC in passerines is hampered by lack of data on genomic organization. Therefore, we assembled and annotated the MHC genomic region of the great reed warbler (Acrocephalus arundinaceus), using long-read sequencing and optical mapping. The MHC region is large (>5.5 Mb), characterized by structural changes compared to hitherto investigated bird orders and shows higher repeat content than the genome average. These features were supported by analyses in three additional passerines. MHC genes in passerines are found in two different chromosomal arrangements, either as single copy MHC genes located among non-MHC genes, or as tandemly duplicated tightly linked MHC genes. Some single copy MHC genes are old and putative orthologues among species. In contrast tandemly duplicated MHC genes are monophyletic within species and have evolved by simultaneous gene duplication of several MHC genes. Structural differences in the MHC genomic region among bird orders seem substantial compared to mammals and have possibly been fuelled by clade-specific immune system adaptations. Our study provides methodological guidance in characterizing complex genomic regions, constitutes a resource for MHC research in birds, and calls for a revision of the general belief that avian MHC has a conserved gene order and small size compared to mammals.
  •  
10.
  • Bernhardsson, Carolina, et al. (author)
  • Development of a highly efficient 50K single nucleotide polymorphism genotyping array for the large and complex genome of Norway spruce (Picea abies L. Karst) by whole genome resequencing and its transferability to other spruce species
  • 2021
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 21:3, s. 880-896
  • Journal article (peer-reviewed)abstract
    • Norway spruce (Picea abies L. Karst) is one of the most important forest tree species with significant economic and ecological impact in Europe. For decades, genomic and genetic studies on Norway spruce have been challenging due to the large and repetitive genome (19.6 Gb with more than 70% being repetitive). To accelerate genomic studies, including population genetics, genome-wide association studies (GWAS) and genomic selection (GS), in Norway spruce and related species, we here report on the design and performance of a 50K single nucleotide polymorphism (SNP) genotyping array for Norway spruce. The array is developed based on whole genome resequencing (WGS), making it the first WGS-based SNP array in any conifer species so far. After identifying SNPs using genome resequencing data from 29 trees collected in northern Europe, we adopted a two-step approach to design the array. First, we built a 450K screening array and used this to genotype a population of 480 trees sampled from both natural and breeding populations across the Norway spruce distribution range. These samples were then used to select high-confidence probes that were put on the final 50K array. The SNPs selected are distributed over 45,552 scaffolds from the P. abies version 1.0 genome assembly and target 19,954 unique gene models with an even coverage of the 12 linkage groups in Norway spruce. We show that the array has a 99.5% probe specificity, >98% Mendelian allelic inheritance concordance, an average sample call rate of 96.30% and an SNP call rate of 98.90% in family trios and haploid tissues. We also observed that 23,797 probes (50%) could be identified with high confidence in three other spruce species (white spruce [Picea glauca], black spruce [P. mariana] and Sitka spruce [P. sitchensis]). The high-quality genotyping array will be a valuable resource for genetic and genomic studies in Norway spruce as well as in other conifer species of the same genus.
  •  
11.
  • Dutoit, Ludovic, et al. (author)
  • Genomic distribution and estimation of nucleotide diversity in natural populations : perspectives from the collared flycatcher (Ficedula albicollis) genome
  • 2017
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 17:4, s. 586-597
  • Journal article (peer-reviewed)abstract
    • Properly estimating genetic diversity in populations of nonmodel species requires a basic understanding of how diversity is distributed across the genome and among individuals. To this end, we analysed whole-genome resequencing data from 20 collared flycatchers (genome size approximate to 1.1 Gb; 10.13 million single nucleotide polymorphisms detected). Genomewide nucleotide diversity was almost identical among individuals (mean = 0.00394, range = 0.00384-0.00401), but diversity levels varied extensively across the genome (95% confidence interval for 200-kb windows = 0.0013-0.0053). Diversity was related to selective constraint such that in comparison with intergenic DNA, diversity at fourfold degenerate sites was reduced to 85%, 3' UTRs to 82%, 5' UTRs to 70% and nondegenerate sites to 12%. There was a strong positive correlation between diversity and chromosome size, probably driven by a higher density of targets for selection on smaller chromosomes increasing the diversity-reducing effect of linked selection. Simulations exploring the ability of sequence data from a small number of genetic markers to capture the observed diversity clearly demonstrated that diversity estimation from finite sampling of such data is bound to be associated with large confidence intervals. Nevertheless, we show that precision in diversity estimation in large out-bred population benefits from increasing the number of loci rather than the number of individuals. Simulations mimicking RAD sequencing showed that this approach gives accurate estimates of genomewide diversity. Based on the patterns of observed diversity and the performed simulations, we provide broad recommendations for how genetic diversity should be estimated in natural populations.
  •  
12.
  • Fortes-Lima, Cesar A., PhD, 1985-, et al. (author)
  • Complex genetic admixture histories reconstructed with Approximate Bayesian Computation
  • 2021
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 21:4, s. 1098-1117
  • Journal article (peer-reviewed)abstract
    • Admixture is a fundamental evolutionary process that has influenced genetic patterns in numerous species. Maximum-likelihood approaches based on allele frequencies and linkage-disequilibrium have been extensively used to infer admixture processes from genome-wide data sets, mostly in human populations. Nevertheless, complex admixture histories, beyond one or two pulses of admixture, remain methodologically challenging to reconstruct. We developed an Approximate Bayesian Computation (ABC) framework to reconstruct highly complex admixture histories from independent genetic markers. We built the software package MetHis to simulate independent SNPs or microsatellites in a two-way admixed population for scenarios with multiple admixture pulses, monotonically decreasing or increasing recurring admixture, or combinations of these scenarios. MetHis allows users to draw model-parameter values from prior distributions set by the user, and, for each simulation, MetHis can calculate numerous summary statistics describing genetic diversity patterns and moments of the distribution of individual admixture fractions. We coupled MetHis with existing machine-learning ABC algorithms and investigated the admixture history of admixed populations. Results showed that random forest ABC scenario-choice could accurately distinguish among most complex admixture scenarios, and errors were mainly found in regions of the parameter space where scenarios were highly nested, and, thus, biologically similar. We focused on African American and Barbadian populations as two study-cases. We found that neural network ABC posterior parameter estimation was accurate and reasonably conservative under complex admixture scenarios. For both admixed populations, we found that monotonically decreasing contributions over time, from Europe and Africa, explained the observed data more accurately than multiple admixture pulses. This approach will allow for reconstructing detailed admixture histories when maximum-likelihood methods are intractable.
  •  
13.
  • Furneaux, Brendan R., et al. (author)
  • Long- and short-read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities
  • 2021
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 21:6, s. 1833-1849
  • Journal article (peer-reviewed)abstract
    • Fungi form diverse communities and play essential roles in many terrestrial ecosystems, yet there are methodological challenges in taxonomic and phylogenetic placement of fungi from environmental sequences. To address such challenges, we investigated spatiotemporal structure of a fungal community using soil metabarcoding with four different sequencing strategies: short-amplicon sequencing of the ITS2 region (300-400 bp) with Illumina MiSeq, Ion Torrent Ion S5 and PacBio RS II, all from the same PCR library, as well as long-amplicon sequencing of the full ITS and partial LSU regions (1200-1600 bp) with PacBio RS II. Resulting community structure and diversity depended more on statistical method than sequencing technology. The use of long-amplicon sequencing enables construction of a phylogenetic tree from metabarcoding reads, which facilitates taxonomic identification of sequences. However, long reads present issues for denoising algorithms in diverse communities. We present a solution that splits the reads into shorter homologous regions prior to denoising, and then reconstructs the full denoised reads. In the choice between short and long amplicons, we suggest a hybrid approach using short amplicons for sampling breadth and depth, and long amplicons to characterize the local species pool for improved identification and phylogenetic analyses.
  •  
14.
  • Hötzinger, Matthias (author)
  • Opening a next-generation black box: Ecological trends for hundreds of species-like taxa uncovered within a single bacterial >99% 16S rRNA operational taxonomic unit
  • 2021
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 21, s. 2471-2485
  • Journal article (peer-reviewed)abstract
    • Current knowledge on environmental distribution and taxon richness of free-living bacteria is mainly based on cultivation-independent investigations employing 16S rRNA gene sequencing methods. Yet, 16S rRNA genes are evolutionarily rather conserved, resulting in limited taxonomic and ecological resolutions provided by this marker. The faster evolving protein-encoding gene priB was used to reveal ecological patterns hidden within a single operational taxonomic unit (OTU) defined by >99% 16S rRNA sequence similarity. The studied subcluster PnecC of the genus Polynucleobacter represents a ubiquitous group of abundant freshwater bacteria with cosmopolitan distribution, which is very frequently detected by diversity surveys of freshwater systems. Based on genome taxonomy and a large set of genome sequences, a sequence similarity threshold for delineation of species-like taxa could be established. In total, 600 species-like taxa were detected in 99 freshwater habitats scattered across three regions representing a latitudinal range of 3,400 km (42 degrees N to 71 degrees N) and a pH gradient of 4.2 to 8.6. In addition to the unexpectedly high richness, the increased taxonomic resolution revealed structuring of Polynucleobacter communities by a couple of macroecological trends, which was previously only demonstrated for phylogenetically much broader groups of bacteria. An unexpected pattern was the almost complete compositional separation of Polynucleobacter communities of Ca2+-rich and Ca2+-poor habitats. This compositional pattern strongly resembled the vicariance of plant species on silicate and limestone soils. The new cultivation-independent approach presented opened a window to an incredible, previously unseen diversity, and enables investigations aiming on deeper understanding of how environmental conditions shape bacterial communities and drive evolution of free-living bacteria.
  •  
15.
  • Irestedt, Martin, et al. (author)
  • A guide to avian museomics : Insights gained from resequencing hundreds of avian study skins
  • 2022
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 22:7, s. 2672-2684
  • Journal article (peer-reviewed)abstract
    • Biological specimens in natural history collections constitute a massive repository of genetic information. Many specimens have been collected in areas in which they no longer exist or in areas where present-day collecting is not possible. There are also specimens in collections representing populations or species that have gone extinct. Furthermore, species or populations may have been sampled throughout an extensive time period, which is particularly valuable for studies of genetic change through time. With the advent of high-throughput sequencing, natural history museum resources have become accessible for genomic research. Consequently, these unique resources are increasingly being used across many fields of natural history. In this paper, we summarize our experiences of resequencing hundreds of genomes from historical avian museum specimens. We publish the protocols we have used and discuss the entire workflow from sampling and laboratory procedures, to the bioinformatic processing of historical specimen data.
  •  
16.
  • Kawakami, Takeshi, et al. (author)
  • Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single-nucleotide polymorphism array
  • 2014
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 14:6, s. 1248-1260
  • Journal article (peer-reviewed)abstract
    • With the access to draft genome sequence assemblies and whole-genome resequencing data from population samples, molecular ecology studies will be able to take truly genome-wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1Gb collared flycatcher genome assembly and identified 13 million single-nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity=0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17kb, but the extent of LD varied markedly within the genome and was more than 10-fold higher in genomic islands' of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F-1 hybrids but no later-generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1Ma, this suggests strong selection against F-1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system.
  •  
17.
  • Leigh, Deborah M., et al. (author)
  • Disentangling adaptation from drift in bottlenecked and reintroduced populations of Alpine ibex
  • 2021
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 21:7, s. 2350-2363
  • Journal article (peer-reviewed)abstract
    • Identifying local adaptation in bottlenecked species is essential for conservation management. Selection detection methods have an important role in species management plans, assessments of adaptive capacity, and looking for responses to climate change. Yet, the allele frequency changes exploited in selection detection methods are similar to those caused by the strong neutral genetic drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection detection methods have across bottlenecked populations. In this study, simulations were used to explore if signals of selection could be confidently distinguished from genetic drift across 23 bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). The meticulously recorded demographic history of the Alpine ibex was used to generate comprehensive simulated SNP data. The simulated SNPs were then used to benchmark the confidence we could place in outliers identified in empirical Alpine ibex RADseq derived SNP data. Within the simulated data set, the false positive rates were high for all selection detection methods (FST outlier scans and Genetic-Environment Association analyses) but fell substantially when two or more methods were combined. True positive rates were consistently low and became negligible with increased stringency. Despite finding many outlier loci in the empirical Alpine ibex SNPs, none could be distinguished from genetic drift-driven false positives. Unfortunately, the low true positive rate also prevents the exclusion of recent local adaptation within the Alpine ibex. The baselines and stringent approach outlined here should be applied to other bottlenecked species to ensure the risk of false positive, or negative, signals of selection are accounted for in conservation management plans.
  •  
18.
  • Lutgen, Dave, et al. (author)
  • Linked-read sequencing enables haplotype-resolved resequencing at population scale
  • 2020
  • In: Molecular Ecology Resources. - : WILEY. - 1755-098X .- 1755-0998. ; 20:5, s. 1311-1322
  • Journal article (peer-reviewed)abstract
    • The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences - including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps - are still limited by the lack of high-quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype-resolved genome resequencing at population scale, we investigated properties of linked-read sequencing data of songbirds of the genusOenantheacross a range of sequencing depths. Our results based on the comparison of downsampled (25x, 20x, 15x, 10x, 7x, and 5x) with high-coverage data (46-68x) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15x coverage, phased haplotypes span about 90% of the genome assembly, with 50% and 90% of phased sequences located in phase blocks longer than 1.25-4.6 Mb (N50) and 0.27-0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15x coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1 Mb [N50/N90] at 25x coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher-quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase-sized genomes like birds, linked-read sequencing at moderate depth opens an affordable avenue towards haplotype-resolved genome resequencing at population scale.
  •  
19.
  • Marquina, Daniel, et al. (author)
  • New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods
  • 2019
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 19:1, s. 90-104
  • Journal article (peer-reviewed)abstract
    • Insect metabarcoding has been mainly based on PCR amplification of short fragments within the barcoding region of the gene cytochrome oxidase I (COI). However, because of the variability of this gene, it has been difficult to design good universal PCR primers. Most primers used today are associated with gaps in the taxonomic coverage or amplification biases that make the results less reliable and impede the detection of species that are present in the sample. We identify new primers for insect metabarcoding using computational approaches (ecoprimers and degeprime) applied to the most comprehensive reference databases of mitochondrial genomes of Hexapoda assembled to date. New primers are evaluated in silico against previously published primers in terms of taxonomic coverage and resolution of the corresponding amplicons. For the latter criterion, we propose a new index, exclusive taxonomic resolution, which is a more biologically meaningful measure than the standard index used today. Our results show that the best markers are found in the ribosomal RNA genes (12S and 16S); they resolve about 90% of the genetically distinct species in the reference database. Some markers in protein-coding genes provide similar performance but only at much higher levels of primer degeneracy. Combining two of the best individual markers improves the effective taxonomic resolution with up to 10%. The resolution is strongly dependent on insect taxon: COI primers detect 40% of Hymenoptera, while 12S primers detect 12% of Collembola. Our results indicate that amplicon-based metabarcoding of insect samples can be improved by choosing other primers than those commonly used today.
  •  
20.
  • Nowak, Michael D., et al. (author)
  • The genome of Draba nivalis shows signatures of adaptation to the extreme environmental stresses of the Arctic
  • 2021
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; :3, s. 661-676
  • Journal article (peer-reviewed)abstract
    • The Arctic is one of the most extreme terrestrial environments on the planet. Here, we present the first chromosome-scale genome assembly of a plant adapted to the high Arctic, Draba nivalis (Brassicaceae), an attractive model species for studying plant adaptation to the stresses imposed by this harsh environment. We used an iterative scaffolding strategy with data from short-reads, single-molecule long reads, proximity ligation data, and a genetic map to produce a 302 Mb assembly that is highly contiguous with 91.6% assembled into eight chromosomes (the base chromosome number). To identify candidate genes and gene families that may have facilitated adaptation to Arctic environmental stresses, we performed comparative genomic analyses with nine non-Arctic Brassicaceae species. We show that the D. nivalis genome contains expanded suites of genes associated with drought and cold stress (e.g., related to the maintenance of oxidation-reduction homeostasis, meiosis, and signaling pathways). The expansions of gene families associated with these functions appear to be driven in part by the activity of transposable elements. Tests of positive selection identify suites of candidate genes associated with meiosis and photoperiodism, as well as cold, drought, and oxidative stress responses. Our results reveal a multifaceted landscape of stress adaptation in the D. nivalis genome, offering avenues for the continued development of this species as an Arctic model plant.
  •  
21.
  • Olsson, Fredrik, et al. (author)
  • GESP : A computer program for modelling genetic effective population size, inbreeding and divergence in substructured populations
  • 2017
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 17:6, s. 1378-1384
  • Journal article (peer-reviewed)abstract
    • The genetically effective population size (N-e) is of key importance for quantifying rates of inbreeding and genetic drift and is often used in conservation management to set targets for genetic viability. The concept was developed for single, isolated populations and the mathematical means for analysing the expected N-e in complex, subdivided populations have previously not been available. We recently developed such analytical theory and central parts of that work have now been incorporated into a freely available software tool presented here. gesp (Genetic Effective population size, inbreeding and divergence in Substructured Populations) is R-based and designed to model short- and long-term patterns of genetic differentiation and effective population size of subdivided populations. The algorithms performed by gesp allow exact computation of global and local inbreeding and eigenvalue effective population size, predictions of genetic divergence among populations (G(ST)) as well as departures from random mating (F-IS, F-IT) while varying (i) subpopulation census and effective size, separately or including trend of the global population size, (ii) rate and direction of migration between all pairs of subpopulations, (iii) degree of relatedness and divergence among subpopulations, (iv) ploidy (haploid or diploid) and (v) degree of selfing. Here, we describe gesp and exemplify its use in conservation genetics modelling.
  •  
22.
  • Peona, Valentina, et al. (author)
  • How complete are "complete" genome assemblies? : An avian perspective
  • 2018
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 18:6, s. 1188-1195
  • Journal article (peer-reviewed)abstract
    • The genomics revolution has led to the sequencing of a large variety of non-model organisms often referred to as 'whole' or 'complete' genome assemblies. But how complete are these, really? Here we use birds as an example for non-model vertebrates and find that, although suitable in principle for genomic studies, the current standard of short-read assemblies misses a significant proportion of the expected genome size (7 to 42%; mean 20 ± 9%). In particular, regions with strongly deviating nucleotide composition (e.g., guanine-cytosine-[GC]-rich) and regions highly enriched in repetitive DNA (e.g., transposable elements and satellite DNA) are usually underrepresented in assemblies. However, long-read sequencing technologies successfully characterize many of these underrepresented GC-rich or repeat-rich regions in several bird genomes. For instance, only ~2% of the expected total base pairs are missing in the last chicken reference (galGal5). These assemblies still contain thousands of gaps (i.e., fragmented sequences) because some chromosomal structures (e.g., centromeres) likely contain arrays of repetitive DNA that are too long to bridge with currently available technologies. We discuss how to minimize the number of assembly gaps by combining the latest available technologies with complementary strengths. Finally, we emphasize the importance of knowing the location, size, and potential content of assembly gaps when making population genetic inferences about adjacent genomic regions.
  •  
23.
  • Peona, Valentina, et al. (author)
  • Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise
  • 2020
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 21:1, s. 263-286
  • Journal article (peer-reviewed)abstract
    • Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat-rich and GC-rich regions (genomic “dark matter”) limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long-read, linked-read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC-rich microchromosomes and the repeat-rich W chromosome. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes.
  •  
24.
  • Pyhajarvi, Tanja, et al. (author)
  • New model species for arctic-alpine plant molecular ecology
  • 2021
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 21:3, s. 637-640
  • Journal article (other academic/artistic)abstract
    • Arctic and alpine, high latitude and high elevation environments are one of the most stressful environments for species to inhabit. This harshness manifests itself in lower species richness in comparison to more southern vegetation zones (Francis & Currie, 2003). Furthermore, the climatic oscillations-past and predicted-have the most dramatic effect on these ecosystems. For example, in regions of continental ice sheets-the northernmost part of Western Europe and North America-the Arctic species assemblages are no older than a few thousands of years, which is a relatively short period from an evolutionary perspective. Although similar environments may have existed further south during the Ice Age, allowing some preadaptation for the Arctic species, the current habitat is a unique combination of environmental factors such as the climate, soil, bedrock, and photoperiod. Hence, understanding the evolutionary forces shaping Arctic-alpine species will be important for predicting these vulnerable environments' population viability and adaptive potential in the future. In this issue of Molecular Ecology Resources, Nowak et al. (Molecular Ecology Resources)present extensive genome-wide resources for an Arctic-alpine plant Draba nivalis. This adds a valuable new member into the cabbage family models for evolutionary genetics and adaptation studies, to accompany e.g., Arabidopsis (Nature Genetics, 43, 476; Nature, 408, 796), Arabis (Nature Plants, 1, 14023) and Capsella (Nature Genetics, 45, 831). A whole new avenue will open up for molecular ecological studies not only for D. nivalis, but the whole large Draba genus with its diverse ecological and evolutionary characteristics.
  •  
25.
  • Roslin, Tomas, et al. (author)
  • A molecular-based identification resource for the arthropods of Finland
  • 2022
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 22:2, s. 803-822
  • Journal article (peer-reviewed)abstract
    • To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 128
Type of publication
journal article (125)
research review (3)
Type of content
peer-reviewed (126)
other academic/artistic (2)
Author/Editor
Hansson, Bengt (11)
Nilsson, R. Henrik, ... (5)
Bensch, Staffan (5)
Bengtsson-Palme, Joh ... (4)
Roslin, Tomas (4)
Lundhagen, Anna (4)
show more...
Wellenreuther, Maren (4)
Johansson, Tomas (3)
Hasselquist, Dennis (3)
Wolf, Jochen B. W. (3)
Ingvarsson, Pär K (3)
Ellegren, Hans (3)
Hellgren, Olof (3)
Jønsson, Knud A. (3)
Dalen, Love (3)
Bunikis, Ignas (3)
André, Carl, 1958 (3)
Abarenkov, Kessy (2)
Bahram, Mohammad (2)
Kristiansson, Erik, ... (2)
Panova, Marina, 1973 (2)
Svensson, Erik (2)
Born, Celine (2)
Fan, Bin (2)
Gonzalez, Clementina (2)
Gutierrez-Rodriguez, ... (2)
Lin, Haoran (2)
Liu, Xiaochun (2)
Meng, Zining (2)
Wang, Le (2)
Andersson, Anders F. (2)
Berggren, Åsa (2)
Olsen, Morten Tange (2)
Zhao, Wei (2)
Jamy, Mahwash (2)
Ryman, Nils (2)
Bruford, M. W. (2)
Irestedt, Martin (2)
Stervander, Martin (2)
Lascoux, Martin (2)
Bruford, Michael W. (2)
Gaillard, Maria (2)
Kanuch, Peter (2)
Wattier, Rémi A. (2)
Jakobsson, Mattias (2)
Cordero-Rivera, Adol ... (2)
Sanchez Guillen, Ros ... (2)
Laikre, Linda (2)
Wang, Xiao-Ru (2)
Hössjer, Ola (2)
show less...
University
Uppsala University (50)
Lund University (23)
Swedish University of Agricultural Sciences (23)
Stockholm University (17)
University of Gothenburg (16)
Swedish Museum of Natural History (11)
show more...
Umeå University (10)
Chalmers University of Technology (4)
Karolinska Institutet (3)
Royal Institute of Technology (2)
Linnaeus University (2)
Linköping University (1)
Karlstad University (1)
show less...
Language
English (128)
Research subject (UKÄ/SCB)
Natural sciences (118)
Agricultural Sciences (8)
Medical and Health Sciences (7)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view