SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2234 943X "

Search: L773:2234 943X

  • Result 1-25 of 272
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aaltonen, Kristina, et al. (author)
  • Patient-derived models : Advanced tools for precision medicine in neuroblastoma
  • 2023
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12
  • Journal article (peer-reviewed)abstract
    • Neuroblastoma is a childhood cancer derived from the sympathetic nervous system. High-risk neuroblastoma patients have a poor overall survival and account for ~15% of childhood cancer deaths. There is thus a need for clinically relevant and authentic models of neuroblastoma that closely resemble the human disease to further interrogate underlying mechanisms and to develop novel therapeutic strategies. Here we review recent developments in patient-derived neuroblastoma xenograft models and in vitro cultures. These models can be used to decipher mechanisms of metastasis and treatment resistance, for drug screening, and preclinical drug testing. Patient-derived neuroblastoma models may also provide useful information about clonal evolution, phenotypic plasticity, and cell states in relation to neuroblastoma progression. We summarize current opportunities for, but also barriers to, future model development and application. Integration of patient-derived models with patient data holds promise for the development of precision medicine treatment strategies for children with high-risk neuroblastoma.
  •  
2.
  • Aasebo, Kristine, et al. (author)
  • CDX2 : A Prognostic Marker in Metastatic Colorectal Cancer Defining a Better BRAF Mutated and a Worse KRAS Mutated Subgroup
  • 2020
  • In: Frontiers in Oncology. - : FRONTIERS MEDIA SA. - 2234-943X. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: Survival of metastatic colorectal cancer (mCRC) patients has improved, but mainly for trial patients. New predictive and prognostic biomarkers validated in the general mCRC population are needed. Caudal-type homeobox 2 (CDX2) is an intestine-specific transcription factor with potential prognostic and predictive effect, but the importance in mCRC has not been fully investigated. Methods: Immunohistochemistry analysis of CDX2 was performed in a Scandinavian population-based cohort of mCRC (n = 796). Frequency, clinical and tumor characteristics, response rate, progression-free survival, and overall survival (OS) were estimated. Results: Loss of CDX2 expression was found in 87 (19%) of 452 stained cases, in 53% if BRAF mutated (BRAFmut) and in 9% if KRAS mutated (KRASmut). CDX2 loss was associated with microsatellite instability, BRAFmut, and poor differentiation and inversely associated with KRASmut. Patients with CDX2 loss received less first-line (53 vs. 64%, p = 0.050) and second-line (23 vs. 39%, p = 0.006) chemotherapy and secondary surgery (1 vs. 9%, p = 0.019). Median progression-free survival and OS for patients given first-line combination chemotherapy was 4 and 10 months if CDX2 loss vs. 9 and 24 months if CDX2 expressed (p = 0.001, p < 0.001). Immediate progression on first-line combination chemotherapy was seen in 35% of patients with CDX2 loss vs. 10% if CDX2 expressed (p = 0.003). Median OS in patients with BRAFmut or KRASmut and CDX2 expressed in tumor (both 21 months) was comparable to wild-type patients (27 months). However, if CDX2 loss, median OS was only 8 and 11 months in BRAFmut and KRASmut cases, respectively, and 10 months in double wild-type patients. In multivariate analysis, CDX2 loss (hazard ratio: 1.50, p = 0.027) and BRAFmut (hazard ratio: 1.62, p = 0.012) were independent poor prognostic markers for OS. Conclusion: In a population-based cohort of mCRC patients, CDX2 loss is an independent poor prognostic marker. Expression of CDX2 defines a new subgroup of BRAFmut cases with a much better prognosis. Loss of CDX2 defines a small group of KRASmut cases with a worse prognosis. Patients with CDX2 loss receive less palliative chemotherapy with less benefit and rarely reach secondary surgery.
  •  
3.
  • Abouzayed, Ayman, et al. (author)
  • 177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry
  • 2023
  • In: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 13
  • Journal article (peer-reviewed)abstract
    • Introduction: Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that Lu-177-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy.Methods: BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [Lu-177]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [Lu-177]Lu-PSMA-617 was simultaneously evaluated for comparison.Results: BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [Lu-177]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities K-D1 = 3.8 nM and K-D2 = 25 nM. The half-maximal inhibitory concentration for Lu-nat-BQ7876 was 59 nM that is equal to 61 nM for Lu-nat-PSMA-617. Cellular processing of [Lu-177]Lu-BQ7876 was accompanied by slow internalization. [Lu-177]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 +/- 3%ID/g) did not differ significantly from tumor uptake (9 +/- 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen.Discussion: Biodistribution studies in mice demonstrated that targeting properties of [Lu-177]Lu-BQ7876 are not inferior to properties of [Lu-177]Lu-PSMA-617, but do not offer any decisive advantages.
  •  
4.
  •  
5.
  • Adrian, Gabriel, et al. (author)
  • Cancer Cells Can Exhibit a Sparing FLASH Effect at Low Doses Under Normoxic In Vitro-Conditions
  • 2021
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Journal article (peer-reviewed)abstract
    • Background: Irradiation with ultra-high dose rate (FLASH) has been shown to spare normal tissue without hampering tumor control in several in vivo studies. Few cell lines have been investigated in vitro, and previous results are inconsistent. Assuming that oxygen depletion accounts for the FLASH sparing effect, no sparing should appear for cells irradiated with low doses in normoxia. Methods: Seven cancer cell lines (MDA-MB-231, MCF7, WiDr, LU-HNSCC4, HeLa [early passage and subclone]) and normal lung fibroblasts (MRC-5) were irradiated with doses ranging from 0 to 12 Gy using FLASH (≥800 Gy/s) or conventional dose rates (CONV, 14 Gy/min), with a 10 MeV electron beam from a clinical linear accelerator. Surviving fraction (SF) was determined with clonogenic assays. Three cell lines were further studied for radiation-induced DNA-damage foci using a 53BP1-marker and for cell cycle synchronization after irradiation. Results: A tendency of increased survival following FLASH compared with CONV was suggested for all cell lines, with significant differences for 4/7 cell lines. The magnitude of the FLASH-sparing expressed as a dose-modifying factor at SF=0.1 was around 1.1 for 6/7 cell lines and around 1.3 for the HeLasubclone. Similar cell cycle distributions and 53BP1-foci numbers were found comparing FLASH to CONV. Conclusion: We have found a FLASH effect appearing at low doses under normoxic conditions for several cell lines in vitro. The magnitude of the FLASH effect differed between the cell lines, suggesting inherited biological susceptibilities for FLASH irradiation.
  •  
6.
  • Aggelopoulos, Christos A., et al. (author)
  • Cold Atmospheric Plasma Attenuates Breast Cancer Cell Growth Through Regulation of Cell Microenvironment Effectors
  • 2022
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Journal article (peer-reviewed)abstract
    • Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO2−/NO3−) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.
  •  
7.
  • Akefeldt, SO, et al. (author)
  • Neutralizing Anti-IL-17A Antibody Demonstrates Preclinical Activity Enhanced by Vinblastine in Langerhans Cell Histiocytosis
  • 2022
  • In: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 11, s. 780191-
  • Journal article (peer-reviewed)abstract
    • Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterised by the accumulation into granulomas of apoptosis-resistant pathological dendritic cells (LCH-DCs). LCH outcome ranges from self-resolving to fatal. Having previously shown that, (i) monocyte-derived DCs (Mo-DCs) from LCH patients differentiate into abnormal and pro-inflammatory IL-17A-producing DCs, and (ii) recombinant IL-17A induces survival and chemoresistance of healthy Mo-DCs, we investigated the link between IL-17A and resistance to apoptosis of LCH-DCs. In LCH granulomas, we uncovered the strong expression of BCL2A1 (alias BFL1), an anti-apoptotic BCL2 family member. In vitro, intracellular IL-17A expression was correlated with BCL2A1 expression and survival of Mo-DCs from LCH patients. Based on the chemotherapeutic drugs routinely used as first or second line LCH therapy, we treated these cells with vinblastine, or cytarabine and cladribine. Our preclinical results indicate that high doses of these drugs decreased the expression of Mcl-1, the main anti-apoptotic BCL2 family member for myeloid cells, and killed Mo-DCs from LCH patients ex vivo, without affecting BCL2A1 expression. Conversely, neutralizing anti-IL-17A antibodies decreased BCL2A1 expression, the downregulation of which lowered the survival rate of Mo-DCs from LCH patients. Interestingly, the in vitro combination of low-dose vinblastine with neutralizing anti-IL-17A antibodies killed Mo-DCs from LCH patients. In conclusion, we show that BCL2A1 expression induced by IL-17A links the inflammatory environment to the unusual pro-survival gene activation in LCH-DCs. Finally, these preclinical data support that targeting both Mcl-1 and BCL2A1 with low-dose vinblastine and anti-IL-17A biotherapy may represent a synergistic combination for managing recurrent or severe forms of LCH.
  •  
8.
  • Alexander, Tobias, et al. (author)
  • Intestinal Microbiome in Hematopoietic Stem Cell Transplantation For Autoimmune Diseases : Considerations and Perspectives on Behalf of Autoimmune Diseases Working Party (ADWP) of the EBMT
  • 2021
  • In: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 11
  • Journal article (peer-reviewed)abstract
    • Over the past decades, hematopoietic stem cell transplantation (HSCT) has been evolving as specific treatment for patients with severe and refractory autoimmune diseases (ADs), where mechanistic studies have provided evidence for a profound immune renewal facilitating the observed beneficial responses. The intestinal microbiome plays an important role in host physiology including shaping the immune repertoire. The relationships between intestinal microbiota composition and outcomes after HSCT for hematologic diseases have been identified, particularly for predicting the mortality from infectious and non-infectious causes. Furthermore, therapeutic manipulations of the gut microbiota, such as fecal microbiota transplant (FMT), have emerged as promising therapeutic approaches for restoring the functional and anatomical integrity of the intestinal microbiota post-transplantation. Although changes in the intestinal microbiome have been linked to various ADs, studies investigating the effect of intestinal dysbiosis on HSCT outcomes for ADs are scarce and require further attention. Herein, we describe some of the landmark microbiome studies in HSCT recipients and patients with chronic ADs, and discuss the challenges and opportunities of microbiome research for diagnostic and therapeutic purposes in the context of HSCT for ADs.
  •  
9.
  • Ali, Haytham, et al. (author)
  • Detection of lymph node metastasis in colon cancer by ectopically expressed fibroblast markers FOXQ1 and THBS2
  • 2023
  • In: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 13
  • Journal article (peer-reviewed)abstract
    • Introduction: Approximately 25% of colon cancer (CC) patients having curative surgery will relapse. Therefore, it is crucial to identify patients with increased recurrence risk to offer them adjuvant chemotherapy. Three markers with prominent expression in fibroblasts: forkhead box Q1 (FOXQ1), matrix metalloproteinase-11 (MMP11), and thrombospondin-2 (THBS2), and the fibroblast expressed chemokine CXCL12 were selected for studies because of the critical role of fibroblasts in the microenvironment of the tumor.Methods: The expression levels of the biomarkers were assessed in primary CC tumors, lymph nodes of CC patients and controls, and CC cell lines at mRNA and protein levels by real-time qRT-PCR and immunohistochemistry, respectively.Results: FOXQ1, MMP11, and THBS2 mRNAs were expressed at significantly higher levels in primary tumors compared to normal colon (P=0.002, P<0.0001, and P<0.0001, respectively). In contrast, CXCL12 mRNA levels were higher in normal colon tissue. FOXQ1, MMP11, and THBS2 levels were also expressed at significantly higher levels in metastasis-positive lymph nodes compared to both metastasis-negative- and control nodes (P<0.0001/P=0.002, P<0.0001/P<0.0001, and P<0.0001/P<0.0001, respectively). Immuno-morphometry revealed that 30–40% of the tumor cells expressed FOXQ1, MMP11, and THBS2. FOXQ1 and THBS2 were barely detected in normal colon epithelium (P<0.0001), while MMP11 was expressed in normal colon epithelium at high levels.Discussion: We conclude that CC tumor cells show ectopic expression of FOXQ1 and THBS2 possibly making these tumor cells independent of fibroblast cell support. The high expression levels of these two biomarkers in metastatic lymph nodes suggest that they are potential indicators of patients at risk for recurrence.
  •  
10.
  •  
11.
  • Almangush, A, et al. (author)
  • Biomarkers for Immunotherapy of Oral Squamous Cell Carcinoma: Current Status and Challenges
  • 2021
  • In: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 11, s. 616629-
  • Journal article (peer-reviewed)abstract
    • Oral squamous cell carcinoma (OSCC) forms a major health problem in many countries. For several decades the management of OSCC consisted of surgery with or without radiotherapy or chemoradiotherapy. Aiming to increase survival rate, recent research has underlined the significance of harnessing the immune response in treatment of many cancers. The promising finding of checkpoint inhibitors as a weapon for targeting metastatic melanoma was a key event in the development of immunotherapy. Furthermore, clinical trials have recently proven inhibitor of PD-1 for treatment of recurrent/metastatic head and neck cancer. However, some challenges (including patient selection) are presented in the era of immunotherapy. In this mini-review we discuss the emergence of immunotherapy for OSCC and the recently introduced biomarkers of this therapeutic strategy. Immune biomarkers and their prognostic perspectives for selecting patients who may benefit from immunotherapy are addressed. In addition, possible use of such biomarkers to assess the response to this new treatment modality of OSCC will also be discussed.
  •  
12.
  • Altunbulakli, Can, et al. (author)
  • Targeted spatial proteomic analysis of CD8+ T- and myeloid cells in tonsillar cancer
  • 2023
  • In: Frontiers in Oncology. - 2234-943X. ; 13
  • Journal article (peer-reviewed)abstract
    • Background: Tonsillar cancer is caused by high-risk human papillomavirus (HPV), tobacco smoking, and alcohol abuse. Aspects of the patient’s immune response to this disease have arisen as prognostic factors and treatment targets, reflecting differences in the type and protein expression profile of immune cells. Because tonsillar cancers are heterogenous lesions such data need to be spatially resolved. Methods: In this study, we aim to explore inter-patient and intra-tumoral sources of variation in tonsillar cancer using immunofluorescence and targeted spatial proteomics to interrogate a cohort of 105 patients. Furthermore, we assess prognostic factors and elucidate molecular targets. We have used CD8, CD11c, and Pan-cytokeratin (PanCK) to quantify and locate immune cells driving antigen-specific cellular immunity. Guided by immunofluorescence information, we selected 355 CD8+, CD11c+, or PanCK+ areas inside and outside (i.e., stroma) cancer-cell islets, to quantify 43 immune-related proteins using digital spatial profiling. Results: Quantitative analysis of immunofluorescence in combination with clinical data revealed that the abundance of total CD8+ cells and CD8+ cells infiltrating cancer-cell islets, respectively, were associated with higher 5-year disease-free survival and overall survival, independently of HPV-status and clinical stage. Comparison of CD8+ cells inside and outside cancer-cell islets revealed an upregulation of effector CD8+ T-cell and immune checkpoint molecules in the former. Among these, the expression of PD-L1 by CD8+ T-cells was associated with lower all-cause mortality in a univariate proportional hazards model. Similarly, a comparison of tumor boundary and stroma CD11c+ cells showed upregulation of both co-stimulatory and immune checkpoint molecules with proximity to tumor cell islets. Conclusion: Our findings highlight the relevance of analyzing aspects of tumor micro-architecture in the search of prognostic markers and molecular targets for tonsillar cancer. The abundance of intra-tumoral CD8+ T-cells can be considered a positive predictive marker for tonsillar cancer, while the significance of PD-L1 expression by intra-tumoral CD8+ T-cells warrants further evaluation. Location-based differences in CD8+ and CD11c+ cells suggest an immune cell-altering effect on the tumor microenvironment, and grant new insight into which cells that can be targeted by novel therapeutic agents.
  •  
13.
  • Andersson, Björn, 1977, et al. (author)
  • Development of a machine learning framework for radiation biomarker discovery and absorbed dose prediction.
  • 2023
  • In: Frontiers in oncology. - 2234-943X. ; 13
  • Journal article (peer-reviewed)abstract
    • Molecular radiation biomarkers are an emerging tool in radiation research with applications for cancer radiotherapy, radiation risk assessment, and even human space travel. However, biomarker screening in genome-wide expression datasets using conventional tools is time-consuming and underlies analyst (human) bias. Machine Learning (ML) methods can improve the sensitivity and specificity of biomarker identification, increase analytical speed, and avoid multicollinearity and human bias.To develop a resource-efficient ML framework for radiation biomarker discovery using gene expression data from irradiated normal tissues. Further, to identify biomarker panels predicting radiation dose with tissue specificity.A strategic search in the Gene Expression Omnibus database identified a transcriptomic dataset (GSE44762) for normal tissues radiation responses (murine kidney cortex and medulla) suited for biomarker discovery using an ML approach. The dataset was pre-processed in R and separated into train and test data subsets. High computational cost of Genetic Algorithm/k-Nearest Neighbor (GA/KNN) mandated optimization and 13 ML models were tested using the caret package in R. Biomarker performance was evaluated and visualized via Principal Component Analysis (PCA) and dose regression. The novelty of ML-identified biomarker panels was evaluated by literature search.Caret-based feature selection and ML methods vastly improved processing time over the GA approach. The KNN method yielded overall best performance values on train and test data and was implemented into the framework. The top-ranking genes were Cdkn1a, Gria3, Mdm2 and Plk2 in cortex, and Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 in medulla. These candidates successfully categorized dose groups and tissues in PCA. Regression analysis showed that correlation between predicted and true dose was high with R2 of 0.97 and 0.99 for cortex and medulla, respectively.The caret framework is a powerful tool for radiation biomarker discovery optimizing performance with resource-efficiency for broad implementation in the field. The KNN-based approach identified Brf2, Ddit4l, and Gria3 mRNA as novel candidates that have been uncharacterized as radiation biomarkers to date. The biomarker panel showed good performance in dose and tissue separation and dose regression. Further training with larger cohorts is warranted to improve accuracy, especially for lower doses.
  •  
14.
  • Araujo, Nathalia, et al. (author)
  • Tumor Suppressor Par-4 Regulates Complement Factor C3 and Obesity
  • 2022
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12
  • Journal article (peer-reviewed)abstract
    • Prostate apoptosis response-4 (Par-4) is a tumor suppressor that induces apoptosis in cancer cells. However, the physiological function of Par-4 remains unknown. Here we show that conventional Par-4 knockout (Par-4-/-) mice and adipocyte-specific Par-4 knockout (AKO) mice, but not hepatocyte-specific Par-4 knockout mice, are obese with standard chow diet. Par-4-/- and AKO mice exhibit increased absorption and storage of fat in adipocytes. Mechanistically, Par-4 loss is associated with mdm2 downregulation and activation of p53. We identified complement factor c3 as a p53-regulated gene linked to fat storage in adipocytes. Par-4 re-expression in adipocytes or c3 deletion reversed the obese mouse phenotype. Moreover, obese human subjects showed lower expression of Par-4 relative to lean subjects, and in longitudinal studies, low baseline Par-4 levels denoted an increased risk of developing obesity later in life. These findings indicate that Par-4 suppresses p53 and its target c3 to regulate obesity.
  •  
15.
  • Arildsen, Nicolai Skovbjerg, et al. (author)
  • Involvement of chromatin remodeling genes and the Rho GTPases RhoB and CDC42 in ovarian clear cell carcinoma
  • 2017
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 7:MAY, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Objective: Ovarian clear cell carcinomas (OCCCs) constitute a rare ovarian cancer subtype with distinct clinical features, but may nonetheless be difficult to distinguish morphologically from other subtypes. There is limited knowledge of genetic events driving OCCC tumorigenesis beyond ARID1A, which is reportedly mutated in 30-50% of OCCCs. We aimed to further characterize OCCCs by combined global transcriptional profiling and targeted deep sequencing of a panel of well-established cancer genes. Increased knowledge of OCCC-specific genetic aberrations may help in guiding development of targeted treatments and ultimately improve patient outcome. Methods: Gene expression profiling of formalin-fixed, paraffin-embedded (FFPE) tissue from a cohort of the major ovarian cancer subtypes (cohort 1; n = 67) was performed using whole-genome cDNA-mediated Annealing, Selection, extension and Ligation (WG-DASL) bead arrays, followed by pathway, gene module score, and gene ontology analyses, respectively. A second FFPE cohort of 10 primary OCCCs was analyzed by targeted DNA sequencing of a panel of 60 cancer-related genes (cohort 2). Non-synonymous and non-sense variants affecting single-nucleotide variations and insertions or deletions were further analyzed. A tissue microarray of 43 OCCCs (cohort 3) was used for validation by immunohistochemistry and chromogenic in situ hybridization. Results: Gene expression analyses revealed a distinct OCCC profile compared to other histological subtypes, with, e.g., ERBB2, TFAP2A, and genes related to cytoskeletal actin regulation being overexpressed in OCCC. ERBB2 was, however, not overexpressed on the protein level and ERBB2 amplification was rare in the validation cohort. Targeted deep sequencing revealed non-synonymous variants or insertions/deletions in 11/60 cancer-related genes. Genes involved in chromatin remodeling, including ARID1A, SPOP, and KMT2D were frequently mutated across OCCC tumors. Conclusion: OCCCs appear genetically heterogeneous, but harbor frequent alterations in chromatin remodeling genes. Overexpression of TFAP2A and ERBB2 was observed on the mRNA level in relation to other ovarian cancer subtypes. However, overexpression of ERBB2 was not reflected by HER2 amplification or protein overexpression in the OCCC validation cohort. In addition, Rho GTPase-dependent actin organization may also play a role in OCCC pathogenesis and warrants further investigation. The distinct biological features of OCCC discovered here may provide a basis for novel targeted treatment strategies.
  •  
16.
  • Arthur, Cecilia, et al. (author)
  • Patient-Specific Assays Based on Whole-Genome Sequencing Data to Measure Residual Disease in Children With Acute Lymphoblastic Leukemia : A Proof of Concept Study
  • 2022
  • In: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 12
  • Journal article (peer-reviewed)abstract
    • Risk-adapted treatment in acute lymphoblastic leukemia (ALL) relies on genetic information and measurable residual disease (MRD) monitoring. In this proof of concept study, DNA from diagnostic bone marrow (BM) of six children with ALL, without stratifying genetics or central nervous system (CNS) involvement, underwent whole-genome sequencing (WGS) to identify structural variants (SVs) in the leukemic blasts. Unique sequences generated by SVs were targeted with patient-specific droplet digital PCR (ddPCR) assays. Genomic DNA (gDNA) from BM and cell-free DNA (cfDNA) from plasma and cerebrospinal fluid (CSF) were analyzed longitudinally. WGS with 30x coverage enabled target identification in all cases. Limit of quantifiability (LoQ) and limit of detection (LoD) for the ddPCR assays (n = 15) were up to 10(-5) and 10(-6), respectively. All targets were readily detectable in a multiplexed ddPCR with minimal DNA input (1 ng of gDNA) at a 10(-1) dilution, and targets for half of the patients were also detectable at a 10(-2) dilution. The level of MRD in BM at end of induction and end of consolidation block 1 was in a comparable range between ddPCR and clinical routine methods for samples with detectable residual disease, although our approach consistently detected higher MRD values for patients with B-cell precursor ALL. Additionally, several samples with undetectable MRD by flow cytometry were MRD-positive by ddPCR. In plasma, the level of leukemic targets decreased in cfDNA over time following the MRD level detected in BM. cfDNA was successfully extracted from all diagnostic CSF samples (n = 6), and leukemic targets were detected in half of these. The results suggest that our approach to design molecular assays, together with ddPCR quantification, is a technically feasible option for accurate MRD quantification and that cfDNA may contribute valuable information regarding MRD and low-grade CNS involvement.
  •  
17.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (author)
  • A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images
  • 2021
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Journal article (peer-reviewed)abstract
    • Objectives: Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this study, we try to compare the performance of a series of carefully selected conventional radiomics methods, end-to-end deep learning models, and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction on an open database that consists of 1297 manually delineated lung nodules.Methods: Conventional radiomics analysis was conducted by extracting standard handcrafted features from target nodule images. Several end-to-end deep classifier networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to identify lung nodule malignancy as well. In addition to the baseline implementations, we also investigated the importance of feature selection and class balancing, as well as separating the features learned in the nodule target region and the background/context region. By pooling the radiomics and deep features together in a hybrid feature set, we investigated the compatibility of these two sets with respect to malignancy prediction.Results: The best baseline conventional radiomics model, deep learning model, and deep-feature based radiomics model achieved AUROC values (mean ± standard deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through 5-fold cross-validation analyses. However, after trying out several optimization techniques, such as feature selection and data balancing, as well as adding context features, the corresponding best radiomics, end-to-end deep learning, and deep-feature based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ± 0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set (AUROC: 0.938 ± 0.010).Conclusion: The end-to-end deep-learning model outperforms conventional radiomics out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to significant improvements in the prediction performance where the conventional and deep-feature based radiomics models achieved comparable results. The hybrid radiomics method seems to be the most promising model for lung nodule malignancy prediction in this comparative study.
  •  
18.
  • Astradsson, Thorsteinn, et al. (author)
  • Systemic Inflammatory Reaction in Patients With Head and Neck Cancer-An Explorative Study
  • 2019
  • In: Frontiers in Oncology. - : FRONTIERS MEDIA SA. - 2234-943X. ; 9
  • Journal article (peer-reviewed)abstract
    • Aim: To assess the longitudinal pattern of pro-inflammatory cytokines and growth factors in serum up to 1 year following treatment for head and neck cancer. Materials and Methods: Patients with newly diagnosed, curable head and neck cancer were included (n = 30). The most common subsite was oropharynx (n = 13) followed by oral cavity (n = 9). Blood was drawn from all patients at regular intervals (before treatment, 7 weeks after the start of the treatment, and at 3 months and 1 year after termination of treatment) and analyzed for cytokines (Il-1 beta, Il-2, Il-4, Il-5, Il-6, Il-8, Il-10, GM-CSF, TNF-alpha, and IFN-gamma) and growth factors (G-CSF, FGF-2, EGF, and VEGF). Results: The time point of the peak level of pro-inflammatory cytokines was 7 weeks after start of treatment which corresponded for the majority of patients with termination of radiotherapy or chemoradiotherapy. Patients undergoing chemoradiotherapy exhibited a significant increase of IL-1 beta, IL-6, and IL-10 at 7 weeks as compared to pre-treatment levels. At 1 year after termination of treatment four patients experienced recurrence of disease while 26 patients were considered disease-free. The patients with recurrence had significantly higher levels of IL-1 beta, IL-6, IL-8, and IL-10 at 7 weeks after the start of treatment than patients without recurrence. Correlated with T stadium patients with T3-T4 had higher levels of IL-1 beta and IL-8 than patients with T1-T2 7 weeks after the start of treatment. Conclusions: The observed immune response in this explorative study demonstrates that chemoradiotherapy may induce not only a local treatment effect on the immune system but also effects far outside the irradiated field. The result of the study indicates that analysis of a pro-inflammatory panel of cytokines in serum at 7 weeks after the start of treatment could be of prognostic value in patients with head and neck cancer. Further study of a larger cohort could help identify patients at larger risk for recurrent disease with measurements of pro-inflammatory cytokines under and after treatment.
  •  
19.
  •  
20.
  • Axelson, Hans, et al. (author)
  • Continuous subcortical language mapping in awake glioma surgery
  • 2022
  • In: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 12
  • Journal article (peer-reviewed)abstract
    • Repetitive monopolar short-train stimulation (STS) delivered from a suction probe enables continuous mapping and distance assessment of corticospinal tracts during asleep glioma resection. In this study, we explored this stimulation technique in awake glioma surgery. Fourteen patients with glioma involving language-related tracts were prospectively included. Continuous (3-Hz) cathodal monopolar STS (five pulses, 250 Hz) was delivered via the tip of a suction probe throughout tumor resection while testing language performance. At 70 subcortical locations, surgery was paused to deliver STS in a steady suction probe position. Monopolar STS influence on language performance at different subcortical locations was separated into three groups. Group 1 represented locations where STS did not produce language disturbance. Groups 2 and 3 represented subcortical locations where STS produced language interference at different threshold intensities (>= 7.5 and <= 5 mA, respectively). For validation, bipolar Penfield stimulation (PS; 60 Hz for 3 s) was used as a "gold standard" comparison method to detect close proximity to language-related tracts and classified as positive or negative regarding language interference. There was no language interference from STS in 28 locations (Group 1), and PS was negative for all sites. In Group 2 (STS threshold >= 7.5 mA; median, 10 mA), there was language interference at 18 locations, and PS (median, 4 mA) was positive in only one location. In Group 3 (STS threshold <= 5 mA; median, 5 mA), there was language interference at 24 locations, and positive PS (median 4 mA) was significantly (p < 0.01) more common (15 out of 24 locations) compared with Groups 1 and 2. Despite the continuous stimulation throughout tumor resection, there were no seizures in any of the patients. In five patients, temporary current spread to the facial nerve was observed. We conclude that continuous subcortical STS is feasibly also in awake glioma surgery and that no language interference from STS or interference at >= 7.5 mA seems to indicate safe distance to language tracts as judged by PS comparisons. STS language interference at STS <= 5 mA was not consistently confirmed by PS, which needs to be addressed.
  •  
21.
  •  
22.
  •  
23.
  • Bagnara, Davide, et al. (author)
  • Characterizing Features of Human Circulating B Cells Carrying CLL-Like Stereotyped Immunoglobulin Rearrangements
  • 2022
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12
  • Journal article (peer-reviewed)abstract
    • Chronic Lymphocytic Leukemia (CLL) is characterized by the accumulation of monoclonal CD5+ B cells with low surface immunoglobulins (IG). About 40% of CLL clones utilize quasi-identical B cell receptors, defined as stereotyped BCR. CLL-like stereotyped-IG rearrangements are present in normal B cells as a part of the public IG repertoire. In this study, we collected details on the representation and features of CLL-like stereotyped-IG in the IGH repertoire of B-cell subpopulations purified from the peripheral blood of nine healthy donors. The B-cell subpopulations were also fractioned according to the expression of surface CD5 molecules and IG light chain, IGκ and IGλ. IG rearrangements, obtained by high throughput sequencing, were scanned for the presence of CLL-like stereotyped-IG. CLL-like stereotyped-IG did not accumulate preferentially in the CD5+ B cells, nor in specific B-cell subpopulations or the CD5+ cell fraction thereof, and their distribution was not restricted to a single IG light chain type. CLL-like stereotyped-IG shared with the corresponding CLL stereotype rearrangements the IGHV mutational status. Instead, for other features such as IGHV genes and frequency, CLL stereotyped-IGs presented a CLL-like subset specific behavior which could, or could not, be consistent with CLL stereotyped-IGs. Therefore, as opposed to the immuno-phenotype, the features of the CLL stereotyped-IG repertoire suggest a CLL stereotyped subset-specific ontogeny. Overall, these findings suggest that the immune-genotype can provide essential details in tracking and defining the CLL cell of origin.
  •  
24.
  • Baquero, JM, et al. (author)
  • OGG1 Inhibition Triggers Synthetic Lethality and Enhances The Effect of PARP Inhibitor Olaparib in BRCA1-Deficient TNBC Cells
  • 2022
  • In: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 888810-
  • Journal article (peer-reviewed)abstract
    • PARP1 plays a critical role in the base excision repair (BER) pathway, and PARP1 inhibition leads to specific cell death, through a synthetic lethal interaction, in the context of BRCA1/2 deficiency. To date, up to five different PARP inhibitors (PARPi), have been approved, nevertheless, the acquisition of resistance to PARPi is common and there is increasing interest in enhancing responses and expand their use to other tumour types.MethodsWe hypothesized that other BER members could be additional synthetic lethal partners with mutated BRCA genes. To test this, we decided to evaluate the glycosylase OGG1 as a potential candidate, by treating BRCA1 proficient and deficient breast cancer cells with PARPi olaparib and the OGG1 inhibitor TH5478.ResultsKnocking out BRCA1 in triple-negative breast cancer cell lines causes hypersensitivity to the OGG1 inhibitor TH5487. Besides, TH5487 enhances the sensitivity to the PARP inhibitor olaparib, especially in the context of BRCA1 deficiency, reflecting an additive interaction.DiscussionThese results provide the first evidence that OGG1 inhibition is a promising new synthetic lethality strategy in BRCA1-deficient cells, and could lead to a new framework for the treatment of hereditary breast and ovarian cancer.
  •  
25.
  • Barone, Angela, et al. (author)
  • Evaluation of Sialyl-Lactotetra as a Marker for Epithelial Ovarian Tumors
  • 2020
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 10
  • Journal article (peer-reviewed)abstract
    • Ovarian carcinoma is a heterogeneous disease with distinct molecular and histological profiles, ranging from low grade atypia to highly aggressive tumors associated with a poor prognosis. In the present study, glycosphingolipids were isolated from human high-grade serous ovarian carcinoma, whereby the novel stem cell marker Sialyl-lactotetra (S-Lc(4)) was characterized in two out of three cases. The presence and level of S-Lc(4)was further evaluated immunohistochemically in a cohort of patients with ovarian tumors ranging from benign lesions to high grade serous carcinoma (n= 478). Its expression was assessed in association with tumor grade, stage, histology, and survival. The data showed that S-Lc(4)is most common and highly expressed in borderline type tumors and carcinomas with low levels of aggressiveness, such as mucinous, endometrioid, and low grade serous. Accordingly, S-Lc(4)-positivity was associated with better disease-free survival. The expression of S-Lc(4)was seemingly associated with lineage continuity and could be traced from premalignant lesions to carcinoma, suggesting inheritance by a stem cell lineage that gives rise to generally indolent tumors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 272
Type of publication
journal article (252)
research review (19)
other publication (1)
Type of content
peer-reviewed (252)
other academic/artistic (20)
Author/Editor
Chatzidimitriou, A (8)
Rosenquist, R. (7)
Borgquist, Signe (7)
Petersson, Kristoffe ... (7)
Ji, Jianguang (7)
Stamatopoulos, K (6)
show more...
Jirström, Karin (6)
Konradsson, Elise (5)
Ceberg, Crister (5)
Langerak, AW (5)
Jernström, Helena (5)
Feychting, M (4)
Agathangelidis, A (4)
Rosenquist, Richard (4)
Sundquist, Jan (4)
Nodin, Björn (4)
Nestor, Marika, 1976 ... (4)
Sparrelid, E (4)
Tryggvadottir, Helga (4)
Bendahl, Pär Ola (3)
Rydén, Lisa (3)
Makitie, A (3)
Rezaei, N (3)
Pontén, Fredrik (3)
Glimelius, Bengt (3)
Wang, Q. (3)
Sundquist, Kristina (3)
Greiff, Lennart (3)
Dabrosin, Charlotta (3)
Végvári, Á (3)
Freedman, J (3)
Laurell, Göran (3)
Bäck, Sven (3)
Nishimura, T. (3)
Ståhlberg, Anders, 1 ... (3)
Corell, Alba (3)
Jakola, Asgeir Store (3)
Brismar, TB (3)
Leandersson, Karin (3)
Ravasco, P (3)
Dasu, Alexandru, 197 ... (3)
Baliakas, Panagiotis ... (3)
Zelic, R (3)
Weber, S. (3)
Isaksson, Karolin (3)
Sundfeldt, Karin, 19 ... (3)
Rosendahl, Ann H. (3)
Chen, Tianhui (3)
Romero-Exposito, Mai ... (3)
Erdmann, F (3)
show less...
University
Karolinska Institutet (148)
Lund University (53)
Uppsala University (49)
University of Gothenburg (27)
Linköping University (15)
Royal Institute of Technology (11)
show more...
Örebro University (8)
Umeå University (7)
Stockholm University (6)
Chalmers University of Technology (4)
University of Borås (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (272)
Research subject (UKÄ/SCB)
Medical and Health Sciences (156)
Natural sciences (12)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view