SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aldrich Melinda C.) "

Search: WFRF:(Aldrich Melinda C.)

  • Result 1-25 of 39
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Machiela, Mitchell J., et al. (author)
  • Characterization of Large Structural Genetic Mosaicism in Human Autosomes
  • 2015
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 96:3, s. 487-497
  • Journal article (peer-reviewed)abstract
    • Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 x 3 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
  •  
2.
  • Conti, David, V, et al. (author)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
3.
  • Wang, Zhaoming, et al. (author)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
4.
  • Wang, Anqi, et al. (author)
  • Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants
  • 2023
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:12, s. 2065-2074
  • Journal article (peer-reviewed)abstract
    • The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  •  
5.
  • McKay, James D., et al. (author)
  • Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes
  • 2017
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 49:7, s. 1126-1132
  • Journal article (peer-reviewed)abstract
    • Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genomewide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.
  •  
6.
  • Jacobs, Kevin B, et al. (author)
  • Detectable clonal mosaicism and its relationship to aging and cancer.
  • 2012
  • In: Nature Genetics. - New York : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 44:6, s. 651-658
  • Journal article (peer-reviewed)abstract
    • In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
  •  
7.
  • Machiela, Mitchell J, et al. (author)
  • Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome
  • 2016
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
  •  
8.
  • Ji, Xuemei, et al. (author)
  • Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk
  • 2018
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
  •  
9.
  • Ji, Xuemei, et al. (author)
  • Protein-altering germline mutations implicate novel genes related to lung cancer development
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio=8.82, P=1.18x10(-15)) and replication (adjusted OR=2.93, P=2.22x10(-3)) that is more pronounced in females (adjusted OR=6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR=2.61, P=7.98x10(-22)) and replication datasets (adjusted OR=1.55, P=0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk. In lung cancer, relatively few germline mutations are known to impact risk. Here the authors looked at rare variants in 39,146 individuals and find novel germline mutations associated with risk, as well as implicating ATM and a new candidate gene for lung cancer risk.
  •  
10.
  • Byun, Jinyoung, et al. (author)
  • Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer
  • 2022
  • In: Nature Genetics. - : Nature Research. - 1061-4036 .- 1546-1718. ; 54:8, s. 1167-1177
  • Journal article (peer-reviewed)abstract
    • To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
  •  
11.
  • Hancock, Dana B, et al. (author)
  • Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function
  • 2012
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:12, s. e1003098-
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV1), and its ratio to forced vital capacity (FEV1/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV1 and FEV1/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest PJMA = 5.00×10−11), HLA-DQB1 and HLA-DQA2 (smallest PJMA = 4.35×10−9), and KCNJ2 and SOX9 (smallest PJMA = 1.28×10−8) were associated with FEV1/FVC or FEV1 in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.
  •  
12.
  • Lesseur, Corina, et al. (author)
  • Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers
  • 2021
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:3
  • Journal article (peer-reviewed)abstract
    • Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.
  •  
13.
  • Li, Yafang, et al. (author)
  • Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development
  • 2019
  • In: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 10:19, s. 1760-1774
  • Journal article (peer-reviewed)abstract
    • The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterations and tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in RGL1:RAD51B (OR=0.44, p value=3.27x10-11 in overall lung cancer and OR=0.41, p value=9.71x10-11 in non-small cell lung cancer), SYNE1:RNF43 (OR=0.73, p value=1.01x10-12 in adenocarcinoma) and FHIT:TSPAN8 (OR=1.82, p value=7.62x10-11 in squamous cell carcinoma) in our analysis. None of these genes have been identified from previous main effect association studies in lung cancer. Further eQTL gene expression analysis in lung tissues provided information supporting the functional role of the identified epistasis in lung tumorigenesis. Gene set enrichment analysis revealed potential pathways and gene networks underlying molecular mechanisms in overall lung cancer as well as histology subtypes development. Our results provide evidence that genetic interactions between oncogenesis-related genes play an important role in lung tumorigenesis and epistasis analysis, combined with functional annotation, provides a valuable tool for uncovering functional novel susceptibility genes that contribute to lung cancer development by interacting with other modifier genes.
  •  
14.
  • Li, Yafang, et al. (author)
  • Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population
  • 2018
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 39:3, s. 336-346
  • Journal article (peer-reviewed)abstract
    • Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13 336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13 970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.
  •  
15.
  • Carreras-Torres, Robert, et al. (author)
  • Obesity, metabolic factors and risk of different histological types of lung cancer : a Mendelian randomization study
  • 2017
  • In: PLOS ONE. - : Public library science. - 1932-6203. ; 12:6
  • Journal article (peer-reviewed)abstract
    • Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95% CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m(2)]), but not for adenocarcinoma (OR [95% CI] = 0.93 [0.79-1.08]) (P-heterogeneity = 4.3x10(-3)). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10(-3)), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95% CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95% CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
  •  
16.
  • Hung, Rayjean J., et al. (author)
  • Lung Cancer Risk in Never-Smokers of European Descent is Associated With Genetic Variation in the 5(p)15.33 TERT-CLPTM1Ll Region
  • 2019
  • In: Journal of Thoracic Oncology. - : ELSEVIER SCIENCE INC. - 1556-0864 .- 1556-1380. ; 14:8, s. 1360-1369
  • Journal article (peer-reviewed)abstract
    • Introduction: Inherited susceptibility to lung cancer risk in never-smokers is poorly understood. The major reason for this gap in knowledge is that this disease is relatively uncommon (except in Asians), making it difficult to assemble an adequate study sample. In this study we conducted a genome-wide association study on the largest, to date, set of European-descent never-smokers with lung cancer. Methods: We conducted a two-phase (discovery and replication) genome-wide association study in never-smokers of European descent. We further augmented the sample by performing a meta-analysis with never-smokers from the recent OncoArray study, which resulted in a total of 3636 cases and 6295 controls. We also compare our findings with those in smokers with lung cancer. Results: We detected three genome-wide statistically significant single nucleotide polymorphisms rs31490 (odds ratio [OR]: 0.769, 95% confidence interval [CI]: 0.722-0.820; p value 5.31 x 10(-16)), rs380286 (OR: 0.770, 95% CI: 0.723-0.820; p value 4.32 x 10(-16)), and rs4975616 OR: 0.778, 95% CI: 0.730-0.829; p value 1.04 x 10(-14)). All three mapped to Chromosome 5 CLPTM1L-TERT region, previously shown to be associated with lung cancer risk in smokers and in never-smoker Asian women, and risk of other cancers including breast, ovarian, colorectal, and prostate. Conclusions: We found that genetic susceptibility to lung cancer in never-smokers is associated to genetic variants with pan-cancer risk effects. The comparison with smokers shows that top variants previously shown to be associated with lung cancer risk only confer risk in the presence of tobacco exposure, underscoring the importance of gene-environment interactions in the etiology of this disease. (C) 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
17.
  • Li, Yafang, et al. (author)
  • Genome-wide interaction analysis identified low-frequency variants with sex disparity in lung cancer risk
  • 2022
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 31:16, s. 2831-2843
  • Journal article (peer-reviewed)abstract
    • Differences by sex in lung cancer incidence and mortality have been reported which cannot be fully explained by sex differences in smoking behavior, implying existence of genetic and molecular basis for sex disparity in lung cancer development. However, the information about sex dimorphism in lung cancer risk is quite limited despite the great success in lung cancer association studies. By adopting a stringent two-stage analysis strategy, we performed a genome-wide gene-sex interaction analysis using genotypes from a lung cancer cohort including ~ 47 000 individuals with European ancestry. Three low-frequency variants (minor allele frequency < 0.05), rs17662871 [odds ratio (OR) = 0.71, P = 4.29×10-8); rs79942605 (OR = 2.17, P = 2.81×10-8) and rs208908 (OR = 0.70, P = 4.54×10-8) were identified with different risk effect of lung cancer between men and women. Further expression quantitative trait loci and functional annotation analysis suggested rs208908 affects lung cancer risk through differential regulation of Coxsackie virus and adenovirus receptor gene expression in lung tissues between men and women. Our study is one of the first studies to provide novel insights about the genetic and molecular basis for sex disparity in lung cancer development.
  •  
18.
  • Li, Yafang, et al. (author)
  • Lung cancer in ever- and never-smokers : findings from multi-population GWAS studies
  • 2024
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association For Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 33:3, s. 389-399
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer.METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer.RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior.CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.
  •  
19.
  • Rosenberger, Albert, et al. (author)
  • Genetic modifiers of radon-induced lung cancer risk : a genome-wide interaction study in former uranium miners
  • 2018
  • In: International Archives of Occupational and Environmental Health. - : Springer Science and Business Media LLC. - 0340-0131 .- 1432-1246. ; 91:8, s. 937-950
  • Journal article (peer-reviewed)abstract
    • Purpose: Radon is a risk factor for lung cancer and uranium miners are more exposed than the general population. A genome-wide interaction analysis was carried out to identify genomic loci, genes or gene sets that modify the susceptibility to lung cancer given occupational exposure to the radioactive gas radon. Methods: Samples from 28 studies provided by the International Lung Cancer Consortium were pooled with samples of former uranium miners collected by the German Federal Office of Radiation Protection. In total, 15,077 cases and 13,522 controls, all of European ancestries, comprising 463 uranium miners were compared. The DNA of all participants was genotyped with the OncoArray. We fitted single-marker and in multi-marker models and performed an exploratory gene-set analysis to detect cumulative enrichment of significance in sets of genes. Results: We discovered a genome-wide significant interaction of the marker rs12440014 within the gene CHRNB4 (OR = 0.26, 95% CI 0.11–0.60, p = 0.0386 corrected for multiple testing). At least suggestive significant interaction of linkage disequilibrium blocks was observed at the chromosomal regions 18q21.23 (p = 1.2 × 10−6), 5q23.2 (p = 2.5 × 10−6), 1q21.3 (p = 3.2 × 10−6), 10p13 (p = 1.3 × 10−5) and 12p12.1 (p = 7.1 × 10−5). Genes belonging to the Gene Ontology term “DNA dealkylation involved in DNA repair” (GO:0006307; p = 0.0139) or the gene family HGNC:476 “microRNAs” (p = 0.0159) were enriched with LD-blockwise significance. Conclusion: The well-established association of the genomic region 15q25 to lung cancer might be influenced by exposure to radon among uranium miners. Furthermore, lung cancer susceptibility is related to the functional capability of DNA damage signaling via ubiquitination processes and repair of radiation-induced double-strand breaks by the single-strand annealing mechanism.
  •  
20.
  • Tang, Wenbo, et al. (author)
  • Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:7, s. e100776-
  • Journal article (peer-reviewed)abstract
    • Background: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. Methods: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. Results: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P = 5.71 x 10(-7)). In addition, meta-analysis using the five cohorts with >= 3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P = 2.18 x 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. Conclusions: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.
  •  
21.
  • Zhou, Wen, et al. (author)
  • Causal relationships between body mass index, smoking and lung cancer : Univariable and multivariable Mendelian randomization
  • 2021
  • In: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 148:5, s. 1077-1086
  • Journal article (peer-reviewed)abstract
    • At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung cancer risk, which may reflect reverse causality and confounding due to smoking behavior. We used two-sample univariable and multivariable Mendelian randomization (MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and histological subtypes based on an aggregated genome-wide association studies (GWASs) analysis of lung cancer in 29 266 cases and 56 450 controls. We observed a positive causal effect for high BMI on occurrence of small-cell lung cancer (odds ratio (OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06,P= 2.70 x 10(-4)). After adjustment of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct causal effect on small cell lung cancer (ORMVMR= 1.28, 95% CI = 1.06-1.55,P-MVMR= .011), and an inverse effect on lung adenocarcinoma (ORMVMR= 0.86, 95% CI = 0.77-0.96,P-MVMR= .008) were observed. A weak increased risk of lung squamous cell carcinoma was observed for higher BMI in univariable Mendelian randomization (UVMR) analysis (ORUVMR= 1.19, 95% CI = 1.01-1.40,P-UVMR= .036), but this effect disappeared after adjustment of smoking (ORMVMR= 1.02, 95% CI = 0.90-1.16,P-MVMR= .746). These results highlight the histology-specific impact of BMI on lung carcinogenesis and imply mediator role of smoking behaviors in the association between BMI and lung cancer.
  •  
22.
  • Artigas Soler, María, et al. (author)
  • Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.
  • 2011
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1082-90
  • Journal article (peer-reviewed)abstract
    • Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
  •  
23.
  • Bosse, Yohan, et al. (author)
  • Transcriptome-wide association study reveals candidate causal genes for lung cancer
  • 2020
  • In: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 146:7, s. 1862-1878
  • Journal article (peer-reviewed)abstract
    • We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large‐scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome‐wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never‐ and ever‐smokers). We performed replication analysis using lung data from the Genotype‐Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever‐smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E−99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E−6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3‐adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E−5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.
  •  
24.
  • Cheng, Chao, et al. (author)
  • Mosaic chromosomal alterations are associated with increased lung cancer risk : insight from the INTEGRAL-ILCCO cohort analysis
  • 2023
  • In: Journal of Thoracic Oncology. - : Elsevier. - 1556-0864 .- 1556-1380. ; 18:8, s. 1003-1016
  • Journal article (peer-reviewed)abstract
    • Introduction: Mosaic chromosomal alterations (mCAs) detected in white blood cells represent a type of clonal hematopoiesis (CH) that is understudied compared with CH-related somatic mutations. A few recent studies indicated their potential link with nonhematological cancers, especially lung cancer. Methods: In this study, we investigated the association between mCAs and lung cancer using the high-density genotyping data from the OncoArray study of INTEGRAL-ILCCO, the largest single genetic study of lung cancer with 18,221 lung cancer cases and 14,825 cancer-free controls. Results: We identified a comprehensive list of autosomal mCAs, ChrX mCAs, and mosaic ChrY (mChrY) losses from these samples. Autosomal mCAs were detected in 4.3% of subjects, in addition to ChrX mCAs in 3.6% of females and mChrY losses in 9.6% of males. Multivariable logistic regression analysis indicated that the presence of autosomal mCAs in white blood cells was associated with an increased lung cancer risk after adjusting for key confounding factors, including age, sex, smoking status, and race. This association was mainly driven by a specific type of mCAs: copy-neutral loss of heterozygosity on autosomal chromosomes. The association between autosome copy-neutral loss of heterozygosity and increased risk of lung cancer was further confirmed in two major histologic subtypes, lung adenocarcinoma and squamous cell carcinoma. In addition, we observed a significant increase of ChrX mCAs and mChrY losses in smokers compared with nonsmokers and racial differences in certain types of mCA events. Conclusions: Our study established a link between mCAs in white blood cells and increased risk of lung cancer.
  •  
25.
  • Dai, Juncheng, et al. (author)
  • Genome-wide association study of INDELs identified four novel susceptibility loci associated with lung cancer risk
  • 2020
  • In: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 146:10, s. 2855-2864
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified 45 susceptibility loci associated with lung ncer. Only less than SNPs, small insertions and deletions (INDELs) are the second most abundant netic polymorphisms in the human genome. INDELs are highly associated with multiple human seases, including lung cancer. However, limited studies with large-scale samples have been available to stematically evaluate the effects of INDELs on lung cancer risk. Here, we performed a large-scale meta- alysis to evaluate INDELs and their risk for lung cancer in 23,202 cases and 19,048 controls. Functional notations were performed to further explore the potential function of lung cancer risk INDELs. nditional analysis was used to clarify the relationship between INDELs and SNPs. Four new risk loci re identified in genome-wide INDEL analysis (1p13.2: rs5777156, Insertion, OR = 0.92, p = 9.10 x 10(- ; 4q28.2: rs58404727, Deletion, OR = 1.19, p = 5.25 x 10(-7); 12p13.31: rs71450133, Deletion, OR = 09, p = 8.83 x 10(-7); and 14q22.3: rs34057993, Deletion, OR = 0.90, p = 7.64 x 10(-8)). The eQTL alysis and functional annotation suggested that INDELs might affect lung cancer susceptibility by gulating the expression of target genes. After conducting conditional analysis on potential causal SNPs, e INDELs in the new loci were still nominally significant. Our findings indicate that INDELs could be tentially functional genetic variants for lung cancer risk. Further functional experiments are needed to tter understand INDEL mechanisms in carcinogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view