SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ansong D) "

Search: WFRF:(Ansong D)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Nakayasu, Ernesto S, et al. (author)
  • Plasma protein biomarkers predict the development of persistent autoantibodies and type 1 diabetes 6 months prior to the onset of autoimmunity
  • 2023
  • In: Cell Reports Medicine. - 2666-3791. ; 4:7
  • Journal article (peer-reviewed)abstract
    • Type 1 diabetes (T1D) results from autoimmune destruction of β cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.
  •  
6.
  •  
7.
  • Dai, Qingyuan, et al. (author)
  • Severe dioxin-like compound (DLC) contamination in e-waste recycling areas : An under-recognized threat to local health
  • 2020
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 139
  • Journal article (peer-reviewed)abstract
    • Electrical and electronic waste (e-waste) burning and recycling activities have become one of the main emission sources of dioxin-like compounds (DLCs). Workers involved in e-waste recycling operations and residents living near e-waste recycling sites (EWRS) are exposed to high levels of DLCs. Epidemiological and experimental in vivo studies have reported a range of interconnected responses in multiple systems with DLC exposure. However, due to the compositional complexity of DLCs and difficulties in assessing mixture effects of the complex mixture of e-waste-related contaminants, there are few studies concerning human health outcomes related to DLC exposure at informal EWRS. In this paper, we have reviewed the environmental levels and body burdens of DLCs at EWRS and compared them with the levels reported to be associated with observable adverse effects to assess the health risks of DLC exposure at EWRS. In general, DLC concentrations at EWRS of many countries have been decreasing in recent years due to stricter regulations on e-waste recycling activities, but the contamination status is still severe. Comparison with available data from industrial sites and well-known highly DLC contaminated areas shows that high levels of DLCs derived from crude e-waste recycling processes lead to elevated body burdens. The DLC levels in human blood and breast milk at EWRS are higher than those reported in some epidemiological studies that are related to various health impacts. The estimated total daily intakes of DLCs for people in EWRS far exceed the WHO recommended total daily intake limit. It can be inferred that people living in EWRS with high DLC contamination have higher health risks. Therefore, more well-designed epidemiological studies are urgently needed to focus on the health effects of DLC pollution in EWRS. Continuous monitoring of the temporal trends of DLC levels in EWRS after actions is of highest importance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view