SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Arnoux G.) "

Search: WFRF:(Arnoux G.)

  • Result 1-23 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Overview of the JET results
  • 2015
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Journal article (peer-reviewed)
  •  
4.
  • Maddison, G. P., et al. (author)
  • Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET
  • 2014
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:7, s. 073016-
  • Journal article (peer-reviewed)abstract
    • The former all-carbon wall on JET has been replaced with beryllium in the main torus and tungsten in the divertor to mimic the surface materials envisaged for ITER. Comparisons are presented between type I H-mode characteristics in each design by examining respective scans over deuterium fuelling and impurity seeding, required to ameliorate exhaust loads both in JET at full capability and in ITER. Attention is focused upon a common high-triangularity, single-null divertor configuration at 2.5 MA, q(95) approximate to 3.5 yielding the most robust all-C performance. Contrasting results between the alternative linings are found firstly in unseeded plasmas, for which purity is improved and intrinsic radiation reduced in the ITER-like wall (ILW) but normalized energy confinement is approximate to 30% lower than in all-C counterparts, owing to a commensurately lower (electron) pedestal temperature. Divertor recycling is also radically altered, with slower, inboard-outboard asymmetric transients at ELMs and spontaneous oscillations in between them. Secondly, nitrogen seeding elicits opposite responses in the ILW to all-C experience, tending to raise plasma density, reduce ELM frequency, and above all to recover (electron) pedestal pressure, hence global confinement, almost back to previous levels. A hitherto unrecognized role of light impurities in pedestal stability and dynamics is consequently suggested. Thirdly, while heat loads on the divertor outboard target between ELMs are successfully reduced in proportion to the radiative cooling and ELM frequency effects of N in both wall environments, more surprisingly, average power ejected by ELMs also declines in the same proportion for the ILW. Detachment between transients is simultaneously promoted. Finally, inter-ELM W sources in the ILW divertor tend to fall with N input, although core accumulation possibly due to increased particle confinement still leads to significantly less steady conditions than in all-C plasmas. This limitation of ILW H-modes so far will be readdressed in future campaigns to continue progress towards a fully integrated scenario suitable for D-T experiments on JET and for 'baseline' operation on ITER. The diverse changes in behaviour between all-C and ILW contexts demonstrate essentially the strong impact which boundary conditions and intrinsic impurities can have on tokamak-plasma states.
  •  
5.
  • Neu, R., et al. (author)
  • First operation with the JET International Thermonuclear Experimental Reactor-like wall
  • 2013
  • In: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:5, s. 056111-1-056111-13
  • Journal article (peer-reviewed)abstract
    • To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (≈ factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 1021 es-1. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at β N ≈ 3, hybrids) have been achieved with W concentrations well below the maximum acceptable level.
  •  
6.
  • Litaudon, X., et al. (author)
  • Development of steady-state scenarios compatible with ITER-like wall conditions
  • 2007
  • In: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B529-B550
  • Journal article (peer-reviewed)abstract
    • A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q(95) similar to 5 and high triangularity, 3 (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching beta(N) similar to 2 at B(o) similar to 3.1 T. Operating at higher 6 has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high beta(N) regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of beta(N) above the 'no-wall magnetohydrodynamic limit' (beta(N) similar to 3.0) have been sustained for a resistive current diffusion time in high-delta configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with similar to 30 MW of applied heating power (at 1.2 MA/2.7 T, q(95) similar to 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.
  •  
7.
  • Arnoux, G., et al. (author)
  • Thermal analysis of an exposed tungsten edge in the JET divertor
  • 2015
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 463, s. 415-419
  • Journal article (peer-reviewed)abstract
    • In the recent melt experiments with the JET tungsten divertor, we observe that the heat flux impacting on a leading edge is 3-10 times lower than a geometrical projection would predict. The surface temperature, tungsten vaporisation rate and melt motion measured during these experiments is consistent with the simulations using the MEMOS code, only if one applies the heat flux reduction. This unexpected observation is the result of our efforts to demonstrate that the tungsten lamella was melted by ELM induced transient heat loads only. This paper describes in details the measurements and data analysis method that led us to this strong conclusion. The reason for the reduced heat flux are yet to be clearly established and we provide some ideas to explore. Explaining the physics of this heat flux reduction would allow to understand whether it can be extrapolated to ITER.
  •  
8.
  • Coenen, J. W., et al. (author)
  • ELM-induced transient tungsten melting in the JET divertor
  • 2015
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:2
  • Journal article (peer-reviewed)abstract
    • The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of I-P = 3.0 MA/B-T = 2.9 T H-mode pulses with an input power of P-IN = 23 MW, a stored energy of similar to 6 MJ and regular type I ELMs at Delta W-ELM = 0.3 MJ and f(ELM) similar to 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within similar to 1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (delta W similar to 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (similar to 80 mu m) were released. Almost 1 mm (similar to 6 mm(3)) of W was moved by similar to 150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j x B forces. The evaporation rate determined from spectroscopy is 100 times less than expected from steady state melting and is thus consistent only with transient melting during the individual ELMs. Analysis of IR data and spectroscopy together with modelling using the MEMOS code Bazylev et al 2009 J. Nucl. Mater. 390-391 810-13 point to transient melting as the main process. 3D MEMOS simulations on the consequences of multiple ELMs on damage of tungsten castellated armour have been performed. These experiments provide the first experimental evidence for the absence of significant melt splashing at transient events resembling mitigated ELMs on ITER and establish a key experimental benchmark for the MEMOS code.
  •  
9.
  • Coenen, J. W., et al. (author)
  • ELM induced tungsten melting and its impact on tokamak operation
  • 2015
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 463, s. 78-84
  • Journal article (peer-reviewed)abstract
    • In JET-ILW dedicated melt exposures were performed using a sequence of 3MA/2.9T H-Mode JET pulses with an input power of P-IN = 23 MW, a stored energy of similar to 6 MJ and regular type I ELMs at Delta W-ELM = 0.3 MJ and f(ELM) similar to 30 Hz. In order to assess the risk of starting ITER operations with a full W divertor, one of the task was to measure the consequences of W transients melting due to ELMs. JET is the only tokamak able to produce transients/ ELMs large enough (>300 kJ per ELM) to facilitate melting of tungsten. Such ELMs are comparable to mitigated ELMs expected in ITER. By moving the outer strike point (OSP) onto a dedicated leading edge the base temperature was raised within similar to 1 s to allow transient ELM-driven melting during the subsequent 0.5 s. Almost 1 mm (similar to 6 mm(3)) of W was moved by similar to 150 ELMs within 5 subsequent discharges. Significant material losses in terms of ejections into the plasma were not observed. There is indirect evidence that some small droplets (similar to 80 mu m) were ejected. The impact on the main plasma parameters is minor and no disruptions occurred. The W-melt gradually moved along the lamella edge towards the high field side, driven by j x B forces. The evaporation rate determined is 100 times less than expected from steady state melting and thus only consistent with transient melting during individual ELMs. IR data, spectroscopy, as well as melt modeling point to transient melting. Although the type of damage studied in these JET experiments is unlikely to be experienced in ITER, the results do strongly support the design strategy to avoid exposed edges in the ITER divertor. The JET experiments required a surface at normal incidence and considerable pre-heating to produce tungsten melting. They provide unique experimental evidence for the absence of significant melt splashing at events resembling mitigated ELMs on ITER and establish a unique experimental benchmark for the simulations being used to study transient shallow melting on ITER W divertor PFUs.
  •  
10.
  •  
11.
  • Corre, Y., et al. (author)
  • Hybrid H-mode scenario with nitrogen seeding and type III ELMs in JET
  • 2008
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50:11, s. 115012-
  • Journal article (peer-reviewed)abstract
    • The performance of the 'hybrid' H-mode regime (long pulse operation with high neutron fluency) has been extensively investigated in JET during the 2005-2007 experimental campaign up to normalized pressure beta(N) = 3, toroidal magnetic field B-t = 1.7T, with type I ELMs plasma edge conditions. The optimized external current drive sources, self-generated non-inductive bootstrap current and plasma core stability properties provide a good prospect of achieving a high fusion gain at reduced plasma current for long durations in ITER. One of the remaining issues is the erosion of the divertor target plates associated with the type I ELM regime. A possible solution could be to operate with a plasma edge in the type III ELM regime (reduced transient and stationary heat loads) obtained with impurity seeding. An integrated hybrid type III ELM regime with a normalized pressure beta(N) = 2.6 (PNBI similar to 20-22 MW) and a thermal confinement factor of H-98* 98(y, 2) similar to 0.83 has been recently successfully developed on JET with nitrogen seeding. This scenario shows good plasma edge condition (compatible with the future ITER-like wall on JET) and moderate MHD activity. In this paper, we report on the experimental development of the scenario (with plasma current I-p = 1.7MA and magnetic field B-t = 1.7T) and the trade-off between heat load reduction at the target plates and global confinement due to nitrogen seeding and type III ELM working conditions.
  •  
12.
  • Giroud, C., et al. (author)
  • Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:11, s. 113025-
  • Journal article (peer-reviewed)abstract
    • This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.
  •  
13.
  • Solano, E. R., et al. (author)
  • Observation of Confined Current Ribbon in JET Plasmas
  • 2010
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 104:18, s. 185003-
  • Journal article (peer-reviewed)abstract
    • We report the identification of a localized current structure inside the JET plasma. It is a field-aligned closed helical ribbon, carrying current in the same direction as the background current profile (cocurrent), rotating toroidally with the ion velocity (corotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first edge localized mode.
  •  
14.
  • Dejarnac, R., et al. (author)
  • Numerical evaluation of heat flux and surface temperature on a misaligned JET divertor W lamella during ELMs
  • 2014
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:12, s. 123011-
  • Journal article (peer-reviewed)abstract
    • A series of experiments has been performed on JET to investigate the dynamics of transient melting due to edge localized modes (ELMs). The experiment employs a deliberately misaligned lamella in one module of the JET bulk tungsten outer divertor, allowing the combination of stationary power flux and ELMs to transiently melt the misaligned edge. During the design of the experiment a number of calculations were performed using 2D particle-in-cell simulations and a heat transfer code to investigate the influence on the deposited power flux of finite Larmor radius effects associated with the energetic ELM ions. This has been performed using parameter scans inside a range of pedestal temperatures and densities to scope different experimentally expected ELM energies. On the one hand, we observe optimistic results, with smoothing of the heat flux due to the Larmor gyration on the protruding side of the lamella which sees the direct parallel flux-the deposited power tends to be lower than the nominal value expected from geometric magnetic field line impact over a distance smaller than 2 Larmor radii, a finding which is always valid during ELMs for such a geometry. On the other hand, the fraction of the flux not reaching the directly wetted side is transferred and spread to the top surface of the lamella. The hottest point of the lamella (corner side/top) does not always benefit from the gain from the Larmor smoothing effect because of an enhanced power deposition from the second contribution.
  •  
15.
  • Giroud, C., et al. (author)
  • Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas
  • 2012
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 52:6, s. 063022-
  • Journal article (peer-reviewed)abstract
    • Experiments on JET with a carbon-fibre composite wall have explored the reduction of steady-state power load in an ELMy H-mode scenario at high Greenwald fraction similar to 0.8, constant power and close to the L to H transition. This paper reports a systematic study of power load reduction due to the effect of fuelling in combination with seeding over a wide range of pedestal density ((4-8) x 10(19) m(-3)) with detailed documentation of divertor, pedestal and main plasma conditions, as well as a comparative study of two extrinsic impurity nitrogen and neon. It also reports the impact of steady-state power load reduction on the overall plasma behaviour, as well as possible control parameters to increase fuel purity. Conditions from attached to fully detached divertor were obtained during this study. These experiments provide reference plasmas for comparison with a future JET Be first wall and an all W divertor where the power load reduction is mandatory for operation.
  •  
16.
  • Liang, Y., et al. (author)
  • Active control of type-I edge localized modes on JET
  • 2007
  • In: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B581-B589
  • Journal article (peer-reviewed)abstract
    • The operational domain for active control of type-I edge localized modes (ELMs) with an n = 1 external magnetic perturbation field induced by the ex-vessel error field correction coils on JET has been developed towards more ITER-relevant regimes with high plasma triangularity, up to 0.45, high normalized beta, up to 3.0, plasma current up to 2.0 MA and q(95) varied between 3.0 and 4.8. The results of ELM mitigation in high triangularity plasmas show that the frequency of type-I ELMs increased by a factor of 4 during the application of the n = 1 fields, while the energy loss per ELM, Delta W/W, decreased from 6% to below the noise level of the diamagnetic measurement (<2%). No reduction of confinement quality (H98Y) during the ELM mitigation phase has been observed. The minimum n = 1 perturbation field amplitude above which the ELMs were mitigated increased with a lower q(95) but always remained below the n = 1 locked mode threshold. The first results of ELM mitigation with n = 2 magnetic perturbations on JET demonstrate that the frequency of ELMs increased from 10 to 35 Hz and a wide operational window of q95 from 4.5 to 3.1 has been found.
  •  
17.
  • Litaudon, X., et al. (author)
  • Prospects for steady-state scenarios on JET
  • 2007
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 47:9, s. 1285-1292
  • Journal article (peer-reviewed)abstract
    • In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (n(1) similar to 4 x 10(19) m(-3)), with ITER-relevant safety factor (q(95) similar to 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (similar to 45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (similar to 15 MW), an upgrade of the NB power (35 MW/20s or 17.5 MW/40s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (similar to 2.5 MA) and density (n(1) > 5 x 10(19) m(-3)), with high beta(N) (beta(N) > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (similar to 3.5 T).
  •  
18.
  • Pamela, S. J. P., et al. (author)
  • Simulation of ELMs in JET
  • 2010
  • In: 37th EPS Conference on Plasma Physics 2010, EPS 2010. - 9781622763313 ; , s. 53-56
  • Conference paper (peer-reviewed)
  •  
19.
  • Rantamäki, K., et al. (author)
  • LH wave coupling over ITER-like distances at JET
  • 2007
  • In: Radio Frequency Power in Plasmas. - : American Institute of Physics (AIP). - 0735404445 - 9780735404441 ; , s. 261-264
  • Conference paper (peer-reviewed)abstract
    • Good coupling of LH power at plasma-launcher distance of 15 cm has been obtained at JET. Near-gas injection is used to increase the density in front of the grill. The role of LH power in the density increase at constant gas level is demonstrated. For the first time at JET the temperature of the hot spots caused by parasitic absorption of LH power has been measured.
  •  
20.
  • Riccardo, V., et al. (author)
  • Progress in understanding halo current at JET
  • 2009
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:5
  • Journal article (peer-reviewed)abstract
    • The poloidal distribution of the halo current density on the top dump plate in JET can now be measured thanks to a new set of Rogowskii coils. These are the first measurements in JET able to offer an insight in the width of the halo current interaction with the wall. Therefore they offer both validation of the assumption made for JET disruption design criteria and one additional point in the extrapolation of the expected halo current width, and hence halo current density (and related local electro-mechanical loads on in-vessel components) for ITER. During upward events, the measured current density is consistent with the measured total poloidal halo current. The halo footprint extends over most of the upper dump plate, converting to a halo current flux tube width of similar to 100 mm. A set of four toridal field pick-up coils installed 90 degrees apart now allows a more accurate measurement of the poloidal halo current, in particular its toroidal peaking factor, and direct comparison between halo and plasma asymmetries.
  •  
21.
  • Beurskens, M. N. A., et al. (author)
  • Pedestal and ELM response to impurity seeding in JET advanced scenario plasmas
  • 2008
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 48:9
  • Journal article (peer-reviewed)abstract
    • Advanced scenario plasmas must often be run at low densities and high power, leading to hot edge temperatures and consequent power handling issues at plasma - surface interaction zones. Experiments at JET are addressing this issue by exploring the use of extrinsic impurity seeding and D-2 puffing to reduce heat fluxes. The experiments presented in this paper continue the line of advanced tokamak ( AT) scenario studies at high triangularity in JET by concentrating on the characterization of the edge pedestal and the ELM behaviour with deuterium and/or light impurity fuelling (neon, nitrogen). Both injection of extrinsic impurities and D2 puffing are shown to have a significant impact on the edge pedestal in typical JET AT conditions. The ELM energy loss, Delta W-ELM/W-dia, can be reduced to below 3% and the maximum ELM penetration depth can be limited to r/a > 0.7, thus enhancing the possibility for sustainable internal transport barriers at large plasma radius. These conditions can be achieved in two separate domains, either at a radiated power fraction (F-rad) of 30% or at a fraction of > 50%. At the lower Frad the ELMs are type I and a high pedestal pressure is maintained, but the occasional large ELM may still occur. At F-rad > 50% the pedestal pressure is degraded by 30-50%, but the ELMs are degraded to type III. The intermediate regime at F-rad similar to 40% is unattractive for ITB scenarios because large type I ELMs occur intermittently during the predominantly type III ELM phases (compound type I/III). F-rad = 30% can be obtained with D-2 fuelling alone, whereas neon or nitrogen seeding is needed to achieve F-rad > 50%. Only a limited number of tests have been carried out with nitrogen seeding, with the preliminary conclusion that the plasma edge behaviour is similar to that with neon seeding once the radiated fraction is matched.
  •  
22.
  • Liang, Y., et al. (author)
  • Active control of type-I edge-localized modes with n=1 perturbation fields in the JET tokamak
  • 2007
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 98:26
  • Journal article (peer-reviewed)abstract
    • Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external n=1 perturbation field generated by four error field correction coils located far from the plasma. During the application of the n=1 field the ELM frequency increased by a factor of 4 and the amplitude of the D-alpha signal decreased. The energy loss per ELM normalized to the total stored energy, Delta W/W, dropped to values below 2%. Transport analyses shows no or only a moderate (up to 20%) degradation of energy confinement time during the ELM mitigation phase.
  •  
23.
  • Murari, A., et al. (author)
  • JET new diagnostic capability on the route to ITER
  • 2007
  • In: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 82:14-maj, s. 1161-1166
  • Journal article (peer-reviewed)abstract
    • The JET scientific programme is directed towards the development of ITER relevant scenarios. In support of this, significant effort has been made to develop diagnostics to better characterise the power deposition on the plasma facing components, to investigate in more detail the radiation losses particularly in the divertor region and to better detect Magneto Hydrodynamic Modes (MHD) instabilities and their effects on fast ion confinement. A new wide-angle infrared camera provides for the first time the opportunity to perform infrared thermography in the JET main chamber, even during fast events like ELMs and disruptions. A completely new bolometric system, with better spatial resolution particularly in the divertor, is now used to investigate the total radiation losses and their influence on the ELM behaviour. A new set of microwave waveguides has improved by 20 dB the signal to noise ratio of the JET X-mode reflectometers, that are now routinely used to detect MHD instabilities and in particular to localise the location of Alfven Eigenmodes. This improved diagnostic capability to monitor MHD instabilities is complemented by two new diagnostics to detect lost fast particles. Both the new scintillator probe and a poloidal array of Faraday cups have already shown clear correlations between MHD activity and ion losses at the edge.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-23 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view