SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Babić A.) "

Search: WFRF:(Babić A.)

  • Result 1-25 of 58
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Acharya, B. S., et al. (author)
  • Introducing the CTA concept
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Journal article (other academic/artistic)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
3.
  • Aartsen, M. G., et al. (author)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11
  • Journal article (peer-reviewed)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
4.
  • Abe, H., et al. (author)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Journal article (peer-reviewed)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
5.
  • Adams, C. B., et al. (author)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Journal article (peer-reviewed)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
6.
  • Abdalla, H., et al. (author)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
7.
  •  
8.
  • Veres, P., et al. (author)
  • Observation of inverse Compton emission from a long gamma-ray burst
  • 2019
  • In: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7783, s. 459-
  • Journal article (peer-reviewed)abstract
    • Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectron volt-to-mega electronvoltband, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission(1,2). Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands(1-6). The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock(7-9). Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C(10,11). Here we report multifrequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 x 10(-6) to 10(12) electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
  •  
9.
  • De Angelis, A., et al. (author)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • In: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Journal article (peer-reviewed)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
10.
  • Ahnen, M. L., et al. (author)
  • Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies
  • 2016
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
  •  
11.
  • Aleksic, J., et al. (author)
  • MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571
  • Journal article (peer-reviewed)abstract
    • Aims. HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H. E. S. S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+0245, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. Methods. HESS J1857+026 was observed by MAGIC in 2010, yielding 29 h of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. Results. We detected very-high-energy gamma-ray emission from HESS J1857+026 with a significance of 12 sigma above 150 GeV. The differential energy spectrum between 100 GeV and 13 TeV is described well by a power law function dN/dE = N-0(E/1TeV)(-Gamma) with N-0 = (5.37 +/- 0.44(stat) +/- 1.5(sys)) X 10(-12) (TeV-1 cm(-2) s(-1)) and Gamma = 2.16 +/- 0.07(stat) +/- 0.15(sys), which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S.. In addition, we present a detailed analysis of the energy-dependent morphology of this region. We couple these results with archival multiwavelength data and outline evidence in favor of a two-source scenario, whereby one source is associated with a PWN, while the other could be linked with a molecular cloud complex containing an HII region and a possible gas cavity.
  •  
12.
  • Acciari, V.A., et al. (author)
  • Monitoring the magnetar SGR 1935+2154 with the MAGIC telescopes
  • 2022
  • In: Proceedings of Science. - 1824-8039. ; 395
  • Conference paper (peer-reviewed)abstract
    • The Galactic magnetar SGR 1935+2154 was associated with a bright, millisecond-timescale fast radio burst (FRB) which occured in April 2020, during a flaring episode. This was the first time an FRB was unequivocally associated with a Galactic source, and the first FRB for which the nature of the emitting source was identified. Moreover, it was the first FRB with a counterpart at another wavelength correlated in time, an atypical, hard X-ray burst, which provides clear evidence for accompanying non-thermal processes. The MAGIC Telescopes are Imaging Air Cherenkov Telescopes (IACTs) sensitive to very-high-energy (VHE, E>100 GeV) gamma rays. Located at the center of the camera lies the MAGIC Central pixel, a single fully-modified photosensor-toreadout chain to measure millisecond-duration optical signals, displaying a maximum sensitivity at a wavelength of 350 nm. This allows MAGIC to operate simultaneously both as a VHE gammaray and a fast optical telescope. The MAGIC telescopes have monitored SGR 1935+2154 in a multiwavelength campaign involving X-ray, radio and optical facilities. In this contribution, we will show the results on the search for the VHE counterpart of the first SGR-FRB source in this multiwavelength context, as well as the search for fast optical bursts with the MAGIC Central Pixel.
  •  
13.
  • Aleksic, J., et al. (author)
  • Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes
  • 2015
  • In: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 5-6, s. 30-38
  • Journal article (peer-reviewed)abstract
    • The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (chi(2)(red) = 35/26). Using systematic uncertainties of the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 +/- 3(stat)+ 31(syst)-13(syst)) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state-of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 mu G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.
  •  
14.
  •  
15.
  • Hollo, G, et al. (author)
  • Referral for first glaucoma surgery in Europe, the ReF-GS study
  • 2019
  • In: European journal of ophthalmology. - : SAGE Publications. - 1724-6016 .- 1120-6721. ; 29:4, s. 406-416
  • Journal article (peer-reviewed)abstract
    • To analyze the appropriateness of referrals for incisional glaucoma-surgery in Europe. Methods: Referrals for the first open-angle glaucoma surgery between January and October 2017 were analyzed in 18 countries: 8 “old” European Union, 7 “new” European Union and 3 non-European Union European countries. Results: Most eyes had primary open-angle or exfoliative glaucoma. The average mean deviation was −13.8 dB with split fixation in 44.3%. No structural progression analysis was made before the referrals. The most common medications were the combination of a prostaglandin analog, timolol and a carbonic anhydrase inhibitor (30.0%), and all other combinations comprising ⩾ 3 molecules (33.8%). Laser trabeculoplasty was reported in only 18.4%. Of the 294 referrals, 41.5% were appropriate and timely, 35.0% appropriate but later than optimal, and 17.6% appropriate but too late (minimal vision maintained). The treatment period was significantly longer (median: 7 years) in the “old” European Union countries than in the other groups (3 and 2 years, respectively). No between-group differences were seen in intraocular pressure and mean deviation, but the non-European Union group referred the patients at significantly lower cup/disk ratio and eye drop usage than the other groups. Split fixation was significantly more common in the “old” (60.6%) than the “new” European Union countries (38.7%), and in both EU country-groups than in the non-European Union countries (13.6%). Conclusions: Of 294 European open-angle glaucoma referrals for first glaucoma-surgery, 41.5% were completely satisfactory. The damage was typically advanced, and the care varied considerably among the countries. This suggests that further efforts are necessary to improve glaucoma care in Europe.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Klein, Alison P., et al. (author)
  • Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer
  • 2018
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 x 10(-8)). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PAN-DoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 x 10(-14)), rs2941471 at 8q21.11 (HNF4G, P = 6.60 x 10(-10)), rs4795218 at 17q12 (HNF1B, P = 1.32 x 10(-8)), and rs1517037 at 18q21.32 (GRP, P = 3.28 x 10(-8)). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
  •  
20.
  • Walsh, Naomi, et al. (author)
  • Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer
  • 2019
  • In: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 111:6
  • Journal article (peer-reviewed)abstract
    • Background: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.Methods: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.Results: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.Conclusion: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
  •  
21.
  • Zhong, Jun, et al. (author)
  • A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer
  • 2020
  • In: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 112:10
  • Journal article (peer-reviewed)abstract
    • Background: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. Methods: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). Results: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEPI) and 11 at six known risk loci (5p15.33: TERT, CLPTMIL, ZDHHCIIB; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTMIL, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. Conclusions: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
  •  
22.
  •  
23.
  •  
24.
  • Batkovskyte, D., et al. (author)
  • Al-Gazali Skeletal Dysplasia Constitutes the Lethal End of ADAMTSL2-Related Disorders
  • 2023
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 38:5, s. 692-706
  • Journal article (peer-reviewed)abstract
    • Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located.
  •  
25.
  • Ghareh Baghi, Arash, et al. (author)
  • An Edge Computing Method for Extracting Pathological Information from Phonocardiogram
  • 2019
  • In: Studies in Health Technology and Informatics. - : IOS Press. - 0926-9630 .- 1879-8365. - 9781614999867 ; 262, s. 364-367
  • Journal article (peer-reviewed)abstract
    • This paper presents a structure of decision support system for pediatric cardiac disease, based on an Internet of Things (IoT) framework. The structure performs the intelligent decision making at its edge processing level, which classifies the heart sound signal, to three classes of cardiac conditions, normal, mild disease, and critical disease. Three types of the errors are introduced to evaluate the performance of the processing method, Type 1, 2 and 3, defined as the incorrect classification from the critical disease, mild, and normal, respectively. The method is validated using 140 real data patient records collected from the hospital referrals. The estimated negative errors for the Type 1, and 2, are calculated to be 0% and 4.8%, against the positive errors which are 6.3% and 13.3%, respectively. The Type 3, is calculated to be 16.7%, showing a high sensitivity of the method to be used in an IoT healthcare framework.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 58
Type of publication
journal article (48)
conference paper (9)
research review (1)
Type of content
peer-reviewed (55)
other academic/artistic (3)
Author/Editor
Babic, A. (24)
Lopez-Coto, R. (12)
Antonelli, L. A. (12)
Barrio, J. A. (12)
Bednarek, W. (12)
Biland, A. (12)
show more...
De Angelis, A. (12)
De Lotto, B. (12)
Dorner, D. (12)
Doro, M. (12)
Godinovic, N. (12)
Lindfors, E. (12)
Lombardi, S. (12)
Lelas, D. (11)
Bonnoli, G. (11)
Contreras, J. L. (11)
Cortina, J. (11)
Covino, S. (11)
Dazzi, F. (11)
Elsaesser, D. (11)
Font, L. (11)
Fruck, C. (11)
Gaug, M. (11)
Hrupec, D. (11)
Kubo, H. (11)
Kushida, J. (11)
Mannheim, K. (11)
Martinez, M. (10)
Bernardini, E. (10)
Ansoldi, S. (10)
Blanch, O. (10)
Colombo, E. (10)
Da Vela, P. (10)
Prester, D. Dominis (10)
Garczarczyk, M. (10)
Hadasch, D. (10)
Herrera, J. (10)
Maneva, G. (10)
Mariotti, M. (10)
Paiano, S. (10)
Saito, T (9)
Rhode, W. (9)
Satalecka, K. (9)
Di Pierro, F. (9)
Fonseca, M. V. (9)
Longo, F. (9)
Makariev, M. (9)
Miranda, J. M. (9)
Mirzoyan, R. (9)
Nishijima, K. (9)
show less...
University
Karolinska Institutet (29)
Mälardalen University (9)
Stockholm University (7)
Umeå University (6)
Linköping University (6)
Royal Institute of Technology (5)
show more...
Linnaeus University (5)
Uppsala University (4)
Lund University (4)
Chalmers University of Technology (2)
University of Gothenburg (1)
show less...
Language
English (58)
Research subject (UKÄ/SCB)
Natural sciences (16)
Medical and Health Sciences (13)
Engineering and Technology (8)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view