SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Badaloni C) "

Search: WFRF:(Badaloni C)

  • Result 1-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Raaschou-Nielsen, O., et al. (author)
  • Particulate matter air pollution components and risk for lung cancer
  • 2016
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 87, s. 66-73
  • Journal article (peer-reviewed)abstract
    • Background: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. Methods: We used data from 14 cohort studies in eight European countries. We geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models for meta-analysis. Results: The 245,782 cohort members contributed 3,229,220 person-years at risk. During follow-up (mean, 13.1 years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was statistically significant In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 125; 95% Cl, 1.01-1.53 per 5 ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20 ng/m3), PMio S (1.58; 1.03-2.44 per 200 ng/m(3)), PM10 Ni (1.59; 1.12-2.26 per 2 ng/m(3)) and PM10K (1.17; 1.02-1.33 per 100 ng/m(3)). In two-pollutant models, associations between PMio and PM2.5 and lung cancer were largely explained by PM2.5 S. Conclusions: This study indicates that the association between PM in air pollution and lung cancer can be attributed to various PM components and sources. PM containing S and Ni might be particularly important.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Pascal, M, et al. (author)
  • Assessing the public health impacts of urban air pollution in 25 European cities : Results of the Aphekom project
  • 2013
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 449, s. 390-400
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: The Aphekom project aimed to provide new, clear, and meaningful information on the health effects of air pollution in Europe. Among others, it assessed the health and monetary benefits of reducing short and long-term exposure to particulate matter (PM) and ozone in 25 European cities. METHOD: Health impact assessments were performed using routine health and air quality data, and a common methodology. Two scenarios were considered: a decrease of the air pollutant levels by a fixed amount and a decrease to the World Health Organization (WHO) air quality guidelines. Results were economically valued by using a willingness to pay approach for mortality and a cost of illness approach for morbidity. RESULTS: In the 25 cities, the largest health burden was attributable to the impacts of chronic exposure to PM2.5. Complying with the WHO guideline of 10μg/m3 in annual mean would add up to 22months of life expectancy at age 30, depending on the city, corresponding to a total of 19,000 deaths delayed. The associated monetary gain would total some €31billion annually, including savings on health expenditures, absenteeism and intangible costs such as well-being, life expectancy and quality of life. CONCLUSION: European citizens are still exposed to concentrations exceeding the WHO recommendations. Aphekom provided robust estimates confirming that reducing urban air pollution would result in significant health and monetary gains in Europe. This work is particularly relevant now when the current EU legislation is being revised for an update in 2013.
  •  
10.
  • Guxens, Monica, et al. (author)
  • Air pollution exposure during pregnancy and childhood autistic traits in four European population-based cohort studies : the ESCAPE project
  • 2016
  • In: Environmental Health Perspectives. - Stockholm : Karolinska Institutet, Dept of Medical Epidemiology and Biostatistics. - 0091-6765 .- 1552-9924.
  • Journal article (peer-reviewed)abstract
    • Background: Prenatal exposure to air pollutants has been suggested as a possible etiologic factor for the occurrence of autism spectrum disorder. Objectives: We aimed to assess whether prenatal air pollution exposure is associated with childhood autistic traits in the general population. Methods: Ours was a collaborative study of four European population-based birth/child cohorts— CATSS (Sweden), Generation R (the Netherlands), GASPII (Italy), and INMA (Spain). Nitrogen oxides (NO2, NOx) and particulate matter (PM) with diameters of ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and between 2.5 and 10 μm (PMcoarse), and PM2.5 absorbance were estimated for birth addresses by land-use regression models based on monitoring campaigns performed between 2008 and 2011. Levels were extrapolated back in time to exact pregnancy periods. We quantitatively assessed autistic traits when the child was between 4 and 10 years of age. Children were classified with autistic traits within the borderline/clinical range and within the clinical range using validated cut-offs. Adjusted cohort-specific effect estimates were combined using random-effects meta-analysis. Results: A total of 8,079 children were included. Prenatal air pollution exposure was not associated with autistic traits within the borderline/clinical range (odds ratio = 0.94; 95% CI: 0.81, 1.10 per each 10‑μg/m3 increase in NO2 pregnancy levels). Similar results were observed in the different cohorts, for the other pollutants, and in assessments of children with autistic traits within the clinical range or children with autistic traits as a quantitative score. Conclusions: Prenatal exposure to NO2 and PM was not associated with autistic traits in children from 4 to 10 years of age in four European population-based birth/child cohort studies.
  •  
11.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-12 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view