SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bandyopadhyay S) "

Search: WFRF:(Bandyopadhyay S)

  • Result 1-25 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
2.
  •  
3.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  •  
5.
  • Aalbers, J., et al. (author)
  • A next-generation liquid xenon observatory for dark matter and neutrino physics
  • 2023
  • In: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 50:1
  • Research review (peer-reviewed)abstract
    • The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
  •  
6.
  • Drake, Thomas M., et al. (author)
  • Outcomes following small bowel obstruction due to malignancy in the national audit of small bowel obstruction
  • 2019
  • In: European Journal of Surgical Oncology. - : Elsevier BV. - 0748-7983 .- 1532-2157. ; 45:12, s. 2319-2324
  • Journal article (peer-reviewed)abstract
    • © 2019 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology Introduction: Patients with cancer who develop small bowel obstruction are at high risk of malnutrition and morbidity following compromise of gastrointestinal tract continuity. This study aimed to characterise current management and outcomes following malignant small bowel obstruction. Methods: A prospective, multicentre cohort study of patients with small bowel obstruction who presented to UK hospitals between 16th January and 13th March 2017. Patients who presented with small bowel obstruction due to primary tumours of the intestine (excluding left-sided colonic tumours) or disseminated intra-abdominal malignancy were included. Outcomes included 30-day mortality and in-hospital complications. Cox-proportional hazards models were used to generate adjusted effects estimates, which are presented as hazard ratios (HR) alongside the corresponding 95% confidence interval (95% CI). The threshold for statistical significance was set at the level of P ≤ 0.05 a-priori. Results: 205 patients with malignant small bowel obstruction presented to emergency surgery services during the study period. Of these patients, 50 had obstruction due to right sided colon cancer, 143 due to disseminated intraabdominal malignancy, 10 had primary tumours of the small bowel and 2 patients had gastrointestinal stromal tumours. In total 100 out of 205 patients underwent a surgical intervention for obstruction. 30-day in-hospital mortality rate was 11.3% for those with primary tumours and 19.6% for those with disseminated malignancy. Severe risk of malnutrition was an independent predictor for poor mortality in this cohort (adjusted HR 16.18, 95% CI 1.86 to 140.84, p = 0.012). Patients with right-sided colon cancer had high rates of morbidity. Conclusions: Mortality rates were high in patients with disseminated malignancy and in those with right sided colon cancer. Further research should identify optimal management strategy to reduce morbidity for these patient groups.
  •  
7.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A∗ (Sgr A∗), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M≈ 4 × 106 M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A∗. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%°-10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.
  •  
8.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A∗ Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Journal article (peer-reviewed)abstract
    • In a companion paper, we present the first spatially resolved polarized image of Sagittarius A∗ on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%-28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87∗, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A∗ (equivalent to ≈ 46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow.
  •  
9.
  • Akiyama, Kazunori, et al. (author)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Journal article (peer-reviewed)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
10.
  •  
11.
  • Bandyopadhyay, S., et al. (author)
  • A statistical approach to determine process parameter impact in Nd : YAG laser drilling of IN718 and Ti-6Al-4V sheets
  • 2005
  • In: Optics and lasers in engineering. - 0143-8166 .- 1873-0302. ; 43:2, s. 163-182
  • Journal article (peer-reviewed)abstract
    • The numerous unique advantages afforded by pulsed Nd:YAG laser systems have led to their increasing utility for producing high aspect ratio holes in a wide range of materials. Notwithstanding the growing industrial acceptance of the technique, the increasingly tighter geometrical tolerances and more stringent hole quality requirements of modern industrial components demand that "defects" such as taper, recast, spatter etc., in laser-drilled holes are minimized. Process parameters like pulse energy, pulse repetition rate, pulse duration, focal position, nozzle standoff, type of gas and gas pressure of the assist gas are known to significantly influence hole quality during laser drilling. The present study reports the use of Taguchi design of experiments technique to study the effects of the above process variables on the quality of the drilled holes and ascertain optimum processing conditions. Minimum taper in the drilled hole was considered as the desired target response. The entire study was conducted in three phases:(a) screening experiments, to identify process variables that critically influence taper in laser drilled holes, (b) Optimization experiments, to ascertain the set of parameters that would yield minimum taper and (c) validation trials, to assess the validity of the experimental procedures and results. Results indicate that laser drilling with focal position on the surface of the material being drilled and employing low level values of pulse duration and pulse energy represents the ideal conditions to achieve minimum taper in laser-drilled holes. Thorough assessment of results also reveals that the laser-drilling process, optimized considering taper in the drilled hole as the target response, leads to very significant improvements in respect of other hole quality attributes of interest such as spatter and recast as well. © 2004 Elsevier Ltd. All rights reserved.
  •  
12.
  •  
13.
  •  
14.
  • Andreasson, Joakim, 1973, et al. (author)
  • A molecule-based 1 : 2 digital demultiplexer
  • 2007
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 111:38, s. 14274-14278
  • Journal article (peer-reviewed)abstract
    • A trichromophoric molecule consisting of a porphyrin linked to both a dihydropyrene and a dihydroindolizine-type photochrome, in combination with a third harmonic generating crystal, functions as a 1:2 digital demultiplexer with photonic inputs and outputs. Each of the two photochromes may be cycled independently between two metastable forms, leading to four photoisomers, three of which are used in the demultiplexer. These isomers interact photochemically with the porphyrin in order to yield the demultiplexer function. With the address input (1064-nm light) turned off, one Output of the device (porphyrin fluorescence) tracks the state of the data input (532-nm light). When the address input is turned on, the second output (absorbance at 572 nm) tracks the state of the data input, while the first output remains off. The demultiplexer does not require chemical or electrical inputs, and can cycle through its operational sequences multiple times.
  •  
15.
  • Andreasson, Joakim, 1973, et al. (author)
  • Molecular 2 : 1 digital multiplexer
  • 2007
  • In: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 46:6, s. 958-961
  • Journal article (peer-reviewed)abstract
    • (Chemical Equation Presented) Two into one: A porphyrin linked to two photochromic moieties performs as a 2:1 digital multiplexer (MUX). It takes heat and red light as the two inputs (in 1 and in 2), and a third switchable input (green light, sel) selects whether the output (porphyrin fluorescence) reports the state of in 1 or in 2. Each photochromic moiety may be independently photoisomerized to isomers that quench the porphyrin fluorescence. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.
  •  
16.
  •  
17.
  • Bandyopadhyay, S., et al. (author)
  • Geometrical features and metallurgical characteristics of Nd : YAG laser drilled holes in thick IN718 and Ti-6Al-4V sheets
  • 2002
  • In: Journal of Materials Processing Technology. - 0924-0136 .- 1873-4774. ; 127:1, s. 83-95
  • Journal article (peer-reviewed)abstract
    • Laser drilling is increasingly becoming the method of choice for precision drilling of a variety of components, particularly in the aircraft industry. Notwithstanding the current level of acceptance of laser drilling in the aerospace industry, a number of defects such as spatter, recast and taper are associated with laser drilled holes and elimination of these defects is the subject of intense research. The present paper deals with Nd:YAG laser drilling of 4 and 8mm thick sections of IN718 and Ti-6Al-4V materials. The influence of type of material and its thickness, as well as parametric impact of key process variables like pulse frequency and pulse energy, have been determined. In the course of this study, relevant geometrical features of the drilled holes, like hole diameter and taper angle, have been comprehensively investigated. In addition, all metallurgical characteristics of interest, viz extent and nature of spatter, recast and heat-affected zone, have been evaluated. Effort has also been made to obtain some insights into the evolution of a through-thickness hole during laser percussion drilling of thick sections by careful experimentation involving monitoring the progression of the drilled hole with increasing number of laser pulses. Issues pertaining to variation of taper with depth of hole, change in crater depth with progressive drilling and specific energy consumption are also discussed. © 2002 Elsevier Science B.V. All rights reserved.
  •  
18.
  •  
19.
  • Carroll, DC, et al. (author)
  • Active manipulation of the spatial energy distribution of laser-accelerated proton beams
  • 2007
  • In: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). - 1539-3755. ; 76:065401(R), s. 1-065401
  • Journal article (peer-reviewed)abstract
    • The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (>10^19 W/cm2) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (<10^13 W/cm2) nanosecond laser pulses, focused onto the front surface of the target foil prior to the arrival of the high intensity pulse, it is demonstrated that the proton beam profile can be actively manipulated. In particular, results obtained with an annular intensity distribution at the focus of the low intensity beam are presented, showing smooth proton beams with a sharp circular boundary at all energies, which represents a significant improvement in the beam quality compared to irradiation with the picosecond beam alone.
  •  
20.
  • Chi, Kim N., et al. (author)
  • Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer : Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study
  • 2021
  • In: Journal of clinical oncology : official journal of the American Society of Clinical Oncology. - 0732-183X. ; 39:20, s. 2294-2303
  • Journal article (peer-reviewed)abstract
    • PURPOSE: The first interim analysis of the phase III, randomized, placebo-controlled TITAN study showed that apalutamide significantly improved overall survival (OS) and radiographic progression-free survival in patients with metastatic castration-sensitive prostate cancer (mCSPC) receiving ongoing androgen deprivation therapy (ADT). Herein, we report final efficacy and safety results after unblinding and placebo-to-apalutamide crossover. METHODS: Patients with mCSPC (N = 1,052) were randomly assigned 1:1 to receive apalutamide (240 mg QD) or placebo plus ADT. After unblinding in January 2019, placebo-treated patients were allowed to receive apalutamide. Efficacy end points were updated using the Kaplan-Meier method and Cox proportional-hazards model without formal statistical retesting and adjustment for multiplicity. Change from baseline in Functional Assessment of Cancer Therapy-Prostate total score was assessed. RESULTS: With a median follow-up of 44.0 months, 405 OS events had occurred and 208 placebo-treated patients (39.5%) had crossed over to apalutamide. The median treatment duration was 39.3 (apalutamide), 20.2 (placebo), and 15.4 months (crossover). Compared with placebo, apalutamide plus ADT significantly reduced the risk of death by 35% (median OS not reached v 52.2 months; hazard ratio, 0.65; 95% CI, 0.53 to 0.79; P < .0001) and by 48% after adjustment for crossover (hazard ratio, 0.52; 95% CI, 0.42 to 0.64; P < .0001). Apalutamide plus ADT delayed second progression-free survival and castration resistance (P < .0001 for both). Health-related quality of life, per total Functional Assessment of Cancer Therapy-Prostate, in both groups was maintained through the study. Safety was consistent with previous reports. CONCLUSION: The final analysis of TITAN confirmed that, despite crossover, apalutamide plus ADT improved OS, delayed castration resistance, maintained health-related quality of life, and had a consistent safety profile in a broad population of patients with mCSPC.
  •  
21.
  •  
22.
  • McKenna, P., et al. (author)
  • Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets
  • 2008
  • In: Laser and Particle Beams. - 0263-0346. ; 26:4, s. 591-596
  • Journal article (peer-reviewed)abstract
    • The properties of beams of high energy protons accelerated during ultraintense, picosecond laser-irradiation of thin foil targets are investigated as a function of preplasma expansion at the target front surface. Significant enhancement in the maximum proton energy and laser-to-proton energy conversion efficiency is observed at optimum preplasma density gradients due, to self-focusing Of the incident laser pulse. For very long preplasma expansion, the propagating laser pulse is observed to filament, resulting in highly uniform proton beams, but with reduced flux and maximum energy.
  •  
23.
  • Straight, S. D., et al. (author)
  • Molecular AND and INHIBIT gates based on control of porphyrin fluorescence by photochromes
  • 2005
  • In: Journal of the American Chemical Society. ; 127:26, s. 9403-9409
  • Journal article (peer-reviewed)abstract
    • A molecular triad consisting of a porphyrin (P) covalently linked to two photochromes - one from the dihydroindolizine family (DHI) and one from the dihydropyrene family (DHP) - has been synthesized and found to act as either a molecular AND logic gate or an INHIBIT gate, depending on the inputs and initial state of the photochromes. The basis of these functions is quenching of porphyrin fluorescence (output of the gates) by the photochromes. The spiro form of DHI does not quench porphyrin fluorescence, whereas its betaine isomer strongly quenches by photoinduced electron transfer. DHP also quenches porphyrin fluorescence, but its cyclophanediene isomer does not. The triad has been designed using suitable energetics and electronic interactions, so that although these quenching phenomena may be observed, independent isomerization of the attached photochromes still occurs. This makes it possible to switch porphyrin fluorescence on or off by isomerization of the photochromes using various combinations of inputs such as UV light, red light, and heat.
  •  
24.
  •  
25.
  • Hernández, Carlos S., et al. (author)
  • Impact of Switchbacks on Turbulent Cascade and Energy Transfer Rate in the Inner Heliosphere
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 922:1
  • Journal article (peer-reviewed)abstract
    • Recent Parker Solar Probe (PSP) observations of inner heliospheric plasma have shown an abundant presence of Alfvénic polarity reversal of the magnetic field, known as "switchbacks." While their origin is still debated, their role in driving the solar wind turbulence has been suggested through analysis of the spectral properties of magnetic fluctuations. Here, we provide a complementary assessment of their role in the turbulent cascade. The validation of the third-order linear scaling of velocity and magnetic fluctuations in intervals characterized by a high occurrence of switchbacks suggests that, irrespective of their local or remote origin, these structures are actively embedded in the turbulent cascade, at least at the radial distances sampled by PSP during its first perihelion. The stronger positive energy transfer rate observed in periods with a predominance of switchbacks indicates that they act as a mechanism injecting additional energy in the turbulence cascade.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view