SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Batalha L) "

Search: WFRF:(Batalha L)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G., et al. (author)
  • 2014
  • Journal article (peer-reviewed)
  •  
2.
  • Aad, G., et al. (author)
  • 2014
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 112:9
  • Journal article (peer-reviewed)
  •  
3.
  •  
4.
  • Aad, G., et al. (author)
  • 2014
  • Journal article (peer-reviewed)
  •  
5.
  • Aad, G., et al. (author)
  • 2014
  • In: Journal of High Energy Physics. - 1029-8479 .- 1126-6708. ; :5
  • Journal article (peer-reviewed)
  •  
6.
  • Carter, Aarynn L., et al. (author)
  • A benchmark JWST near-infrared spectrum for the exoplanet WASP-39 b
  • 2024
  • In: Nature Astronomy. - 2397-3366. ; In Press
  • Journal article (peer-reviewed)abstract
    • A combined analysis of datasets across four JWST instrument modes provides a benchmark transmission spectrum for the Saturn-mass WASP-39 b. The broad wavelength range and high resolution constrain orbital and stellar parameters to below 1%.
  •  
7.
  •  
8.
  •  
9.
  • Bell, Taylor, et al. (author)
  • Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
  • 2024
  • In: Nature Astronomy. - 2397-3366. ; 8:7, s. 879-898
  • Journal article (peer-reviewed)abstract
    • Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.
  •  
10.
  • Esparza-Borges, E., et al. (author)
  • Detection of Carbon Monoxide in the Atmosphere of WASP-39b Applying Standard Cross-correlation Techniques to JWST NIRSpec G395H Data
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 955:1
  • Journal article (peer-reviewed)abstract
    • Carbon monoxide was recently reported in the atmosphere of the hot Jupiter WASP-39b using the NIRSpec PRISM transit observation of this planet, collected as part of the JWST Transiting Exoplanet Community Early Release Science Program. This detection, however, could not be confidently confirmed in the initial analysis of the higher-resolution observations with NIRSpec G395H disperser. Here we confirm the detection of CO in the atmosphere of WASP-39b using the NIRSpec G395H data and cross-correlation techniques. We do this by searching for the CO signal in the unbinned transmission spectrum of the planet between 4.6 and 5.0 μm, where the contribution of CO is expected to be higher than that of other anticipated molecules in the planet’s atmosphere. Our search results in a detection of CO with a cross-correlation function (CCF) significance of 6.6σ when using a template with only 12C16O lines. The CCF significance of the CO signal increases to 7.5σ when including in the template lines from additional CO isotopologues, with the largest contribution being from 13C16O. Our results highlight how cross-correlation techniques can be a powerful tool for unveiling the chemical composition of exoplanetary atmospheres from medium-resolution transmission spectra, including the detection of isotopologues.
  •  
11.
  • Powell, Diana, et al. (author)
  • Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 626:8001, s. 979-983
  • Journal article (peer-reviewed)abstract
    • The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5–25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.
  •  
12.
  • Gandolfi, D., et al. (author)
  • The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 876:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V = 9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival High Accuracy Radial velocity Planet Searcher spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of {7.51}-1.01+1.09 {M}\oplus and a radius of 1.64 ± 0.06 R ⊕, HD 15337 b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337 c has an orbital period of 17.2 days, a mass of {8.11}-1.69+1.82 {{{M}}}\oplus , and a radius of 2.39 ± 0.12 R ⊕, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337 c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.
  •  
13.
  • Beard, Corey, et al. (author)
  • The TESS-Keck Survey. XVII. Precise Mass Measurements in a Young, High-multiplicity Transiting Planet System Using Radial Velocities and Transit Timing Variations
  • 2024
  • In: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:2
  • Journal article (peer-reviewed)abstract
    • We present a radial velocity (RV) analysis of TOI-1136, a bright Transiting Exoplanet Survey Satellite (TESS) system with six confirmed transiting planets, and a seventh single-transiting planet candidate. All planets in the system are amenable to transmission spectroscopy, making TOI-1136 one of the best targets for intra-system comparison of exoplanet atmospheres. TOI-1136 is young (similar to 700 Myr), and the system exhibits transit timing variations (TTVs). The youth of the system contributes to high stellar variability on the order of 50 m s-1, much larger than the likely RV amplitude of any of the transiting exoplanets. Utilizing 359 High Resolution Echelle Spectrometer and Automated Planet Finder RVs collected as part of the TESS-Keck Survey, and 51 High-Accuracy Radial velocity Planetary Searcher North RVs, we experiment with a joint TTV-RV fit. With seven possible transiting planets, TTVs, more than 400 RVs, and a stellar activity model, we posit that we may be presenting the most complex mass recovery of an exoplanet system in the literature to date. By combining TTVs and RVs, we minimized Gaussian process overfitting and retrieved new masses for this system: (m b-g = 3.50-0.7+0.8 , 6.32-1.3+1.1 , 8.35-1.6+1.8 , 6.07-1.01+1.09 , 9.7-3.7+3.9 , 5.6-3.2+4.1 M circle plus). We are unable to significantly detect the mass of the seventh planet candidate in the RVs, but we are able to loosely constrain a possible orbital period near 80 days. Future TESS observations might confirm the existence of a seventh planet in the system, better constrain the masses and orbital properties of the known exoplanets, and generally shine light on this scientifically interesting system.
  •  
14.
  • Buchhave, Lars A., et al. (author)
  • An abundance of small exoplanets around stars with a wide range of metallicities
  • 2012
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 486:7403, s. 375-377
  • Journal article (peer-reviewed)abstract
    • The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets(1-4), supporting the model that planets form by accumulation of dust and ice particles(5). Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets(4,6-9). However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission(10), including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.
  •  
15.
  • Li, Yuanzhi, et al. (author)
  • Habitat filtering determines the functional niche occupancy of plant communities worldwide
  • 2018
  • In: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 106:3, s. 1001-1009
  • Journal article (peer-reviewed)abstract
    • How the patterns of niche occupancy vary from species-poor to species-rich communities is a fundamental question in ecology that has a central bearing on the processes that drive patterns of biodiversity. As species richness increases, habitat filtering should constrain the expansion of total niche volume, while limiting similarity should restrict the degree of niche overlap between species. Here, by explicitly incorporating intraspecific trait variability, we investigate the relationship between functional niche occupancy and species richness at the global scale. We assembled 21 datasets worldwide, spanning tropical to temperate biomes and consisting of 313 plant communities representing different growth forms. We quantified three key niche occupancy components (the total functional volume, the functional overlap between species and the average functional volume per species) for each community, related each component to species richness, and compared each component to the null expectations. As species richness increased, communities were more functionally diverse (an increase in total functional volume), and species overlapped more within the community (an increase in functional overlap) but did not more finely divide the functional space (no decline in average functional volume). Null model analyses provided evidence for habitat filtering (smaller total functional volume than expectation), but not for limiting similarity (larger functional overlap and larger average functional volume than expectation) as a process driving the pattern of functional niche occupancy. Synthesis. Habitat filtering is a widespread process driving the pattern of functional niche occupancy across plant communities and coexisting species tend to be more functionally similar rather than more functionally specialized. Our results indicate that including intraspecific trait variability will contribute to a better understanding of the processes driving patterns of functional niche occupancy.
  •  
16.
  • Schodde, R., et al. (author)
  • Why neotypification of Lophorina superba (Pennant, 1781) (Aves: Paradisaeidae) is justified—and necessary
  • 2021
  • In: Zootaxa. - : Magnolia Press. - 1175-5326 .- 1175-5334.
  • Journal article (peer-reviewed)abstract
    • We review Irestedt et al.'s (2017) neotypification of the senior species name superba Pennant, 1781 in the bird-of-paradise genus Lophorina in response to Elliott et al.(2020) who challenged the resultant shift in name from the small isolate in New Guinea's Vogelkop to the widespread species in the island's central cordillera. In nine male plumage traits which differentiate the two species, six of which had been identified as novel by Irestedt et al., we show that the only two figures of the perished male holotype of superba match the central cordillera species more closely than the Vogelkop. We find as well that not only was the trading of bird-of-paradise skins from the central cordillera to coastal ports in the Vogelkop feasible before European contact, but application of superba to the central cordillera species also promotes nomenclatural stability: the name has been used overwhelmingly at species rank for that widespread form throughout post-19th century media. Re-assessment of Irestedt et al.'s point-by-point justification of neotypification under Article 75.3 of the ICZN (1999) Code establishes, furthermore, that their case meets the requirements of every condition specified in the article; the neotypification is thus valid. Elliott et al.'s alternative to fix superba to the Vogelkop isolate by type locality restriction is not Code-compliant, nor is their evidence for interpreting JR Forster as the author of the name. In conclusion, we lay out the correct nomenclature for the taxa of Lophorina under the Code.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view