SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Behrens Timothy W.) "

Search: WFRF:(Behrens Timothy W.)

  • Result 1-20 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Wang, Li-San, et al. (author)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Journal article (peer-reviewed)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
3.
  • Langefeld, Carl D., et al. (author)
  • Transancestral mapping and genetic load in systemic lupus erythematosus
  • 2017
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (similar to 50% of these regions have multiple independent associations); these include 24 novel SLE regions (P < 5 x 10(-8)), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.
  •  
4.
  • Okada, Yukinori, et al. (author)
  • Genetics of rheumatoid arthritis contributes to biology and drug discovery
  • 2014
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 506:7488, s. 376-381
  • Journal article (peer-reviewed)abstract
    • A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)(1). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating similar to 10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2-4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation(5), cis-acting expression quantitative trait loci(6) and pathway analyses(7-9)-as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes-to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
  •  
5.
  • Bentham, James, et al. (author)
  • Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 47:12, s. 1457-1464
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE.
  •  
6.
  • Cunninghame Graham, Deborah S, et al. (author)
  • Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus
  • 2011
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:10, s. e1002341-
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a complex trait characterised by the production of a range of auto-antibodies and a diverse set of clinical phenotypes. Currently, ∼8% of the genetic contribution to SLE in Europeans is known, following publication of several moderate-sized genome-wide (GW) association studies, which identified loci with a strong effect (OR>1.3). In order to identify additional genes contributing to SLE susceptibility, we conducted a replication study in a UK dataset (870 cases, 5,551 controls) of 23 variants that showed moderate-risk for lupus in previous studies. Association analysis in the UK dataset and subsequent meta-analysis with the published data identified five SLE susceptibility genes reaching genome-wide levels of significance (P(comb)<5×10(-8)): NCF2 (P(comb) = 2.87×10(-11)), IKZF1 (P(comb) = 2.33×10(-9)), IRF8 (P(comb) = 1.24×10(-8)), IFIH1 (P(comb) = 1.63×10(-8)), and TYK2 (P(comb) = 3.88×10(-8)). Each of the five new loci identified here can be mapped into interferon signalling pathways, which are known to play a key role in the pathogenesis of SLE. These results increase the number of established susceptibility genes for lupus to ∼30 and validate the importance of using large datasets to confirm associations of loci which moderately increase the risk for disease.
  •  
7.
  • Harley, John B., et al. (author)
  • Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 40:2, s. 204-10
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (lambda(S) = approximately 30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 x 10(-7) < P(overall) < 1.6 x 10(-23); odds ratio = 0.82-1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 x 10(-5)) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at > or =9 other loci (P < 2 x 10(-7)). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
  •  
8.
  • Wang, Ning, et al. (author)
  • Selective IgA deficiency in autoimmune diseases
  • 2011
  • In: Molecular Medicine. - Baltimore, Md. : Johns Hopkins University Press. - 1076-1551 .- 1528-3658. ; 17:11-12, s. 1383-
  • Research review (peer-reviewed)abstract
    • Selective IgA deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. It has previously been suggested to be associated with a variety of concomitant autoimmune diseases. In this review, we present data on the prevalence of IgAD in patients with Graves' disease (GD), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), celiac disease (CD), myasthenia gravis (MG) and rheumatoid arthritis (RA) based both on our own, recent, large scale screening results and literature data. Genetic factors are important for the development of both IgAD and various autoimmune disorders, including GD, SLE, T1D, CD, MG and RA, and a strong association with the MHC region has been reported. In addition, non-MHC genes, such as IFIH1 and CLEC16A, are also associated with the development of IgAD and some of the above diseases. This indicates a possible common genetic background. In this review, we present suggestive evidence for a shared genetic predisposition between these disorders.
  •  
9.
  • Chung, Sharon A., et al. (author)
  • Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti-dsDNA Autoantibody Production
  • 2011
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:3, s. e1001323-
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti-dsDNA autoantibody production, a SLE-related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti-dsDNA autoantibody positive (anti-dsDNA +, n = 811) and anti-dsDNA autoantibody negative (anti-dsDNA -, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti-dsDNA + SLE. Far fewer and weaker associations were observed for anti-dsDNA - SLE. For example, rs7574865 in STAT4 had an OR for anti-dsDNA + SLE of 1.77 (95% CI 1.57-1.99, p = 2.0E-20) compared to an OR for anti-dsDNA - SLE of 1.26 (95% CI 1.12-1.41, p = 2.4E-04), with (Pheterogeneity)<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti-dsDNA + SLE and were not associated with anti-dsDNA - SLE. In conclusion, we identified differential genetic associations with SLE based on anti-dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti-dsDNA - SLE.
  •  
10.
  • Chung, Sharon A, et al. (author)
  • European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus
  • 2009
  • In: Arthritis and Rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 60:8, s. 2448-2456
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: To determine whether genetic substructure in European-derived populations is associated with specific manifestations of systemic lupus erythematosus (SLE), including mucocutaneous phenotypes, autoantibody production, and renal disease. METHODS: SLE patients of European descent (n=1,754) from 8 case collections were genotyped for >1,400 ancestry informative markers that define a north-south gradient of European substructure. Using the Structure program, each SLE patient was characterized in terms of percent Northern (versus percent Southern) European ancestry based on these genetic markers. Nonparametric methods, including tests for trend, were used to identify associations between Northern European ancestry and specific SLE manifestations. RESULTS: In multivariate analyses, increasing levels of Northern European ancestry were significantly associated with photosensitivity (Ptrend=0.0021, odds ratio for highest quartile of Northern European ancestry versus lowest quartile [ORhigh-low] 1.64, 95% confidence interval [95% CI] 1.13-2.35) and discoid rash (Ptrend=0.014, ORhigh-low 1.93, 95% CI 0.98-3.83). In contrast, increasing levels of Northern European ancestry had a protective effect against the production of anticardiolipin autoantibodies (Ptrend=1.6x10(-4), ORhigh-low 0.46, 95% CI 0.30-0.69) and anti-double-stranded DNA autoantibodies (Ptrend=0.017, ORhigh-low 0.67, 95% CI 0.46-0.96). CONCLUSION: This study demonstrates that specific SLE manifestations vary according to Northern versus Southern European ancestry. Thus, genetic ancestry may contribute to the clinical heterogeneity and variation in disease outcomes among SLE patients of European descent. Moreover, these results suggest that genetic studies of SLE subphenotypes will need to carefully address issues of population substructure based on genetic ancestry.
  •  
11.
  •  
12.
  • Gateva, Vesela, et al. (author)
  • A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:11, s. 1228-1233
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 x 10(-8)): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P< or = 1 x 10(-5). A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 x 10(-3)) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.
  •  
13.
  • Graham, R. Robert, et al. (author)
  • Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus
  • 2007
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:16, s. 6758-6763
  • Journal article (peer-reviewed)abstract
    • Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3' UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.
  •  
14.
  • Hom, Geoffrey, et al. (author)
  • Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX.
  • 2008
  • In: New England Journal of Medicine. - : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 358:9, s. 900-909
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease in which the risk of disease is influenced by complex genetic and environmental contributions. Alleles of HLA-DRB1, IRF5, and STAT4are established susceptibility genes; there is strong evidence for the existence of additional risk loci.METHODS: We genotyped more than 500,000 single-nucleotide polymorphisms (SNPs) in DNA samples from 1311 case subjects with SLE and 1783 control subjects; all subjects were North Americans of European descent. Genotypes from 1557 additional control subjects were obtained from public data repositories. We measured the association between the SNPs and SLE after applying strict quality-control filters to reduce technical artifacts and to correct for the presence of population stratification. Replication of the top loci was performed in 793 case subjects and 857 control subjects from Sweden.RESULTS: Genetic variation in the region upstream from the transcription initiation site of the gene encoding B lymphoid tyrosine kinase (BLK) and C8orf13 (chromosome 8p23.1) was associated with disease risk in both the U.S. and Swedish case–control series (rs13277113; odds ratio, 1.39; P=1×10−10) and also with altered levels of messenger RNA in B-cell lines. In addition, variants on chromosome 16p11.22, near the genes encoding integrin alpha M (ITGAM, or CD11b) and integrin alpha X (ITGAX), were associated with SLE in the combined sample (rs11574637; odds ratio, 1.33; P=3×10−11).
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Sandling, Johanna K., et al. (author)
  • A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE
  • 2011
  • In: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 19:4, s. 479-484
  • Journal article (peer-reviewed)abstract
    • Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (P(meta)=0.00010 and P(meta)=0.00040, respectively). STAT1 was also associated with SLE in this cohort (P(meta)=3.3 × 10(-5)), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
  •  
19.
  •  
20.
  • Wang, Chuan, et al. (author)
  • Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations
  • 2013
  • In: European Journal of Human Genetics. - : Nature Publishing Group: Open Access Hybrid Model Option B. - 1018-4813 .- 1476-5438. ; 21:9, s. 994-999
  • Journal article (peer-reviewed)abstract
    • Recent genome-wide association studies (GWASs) conducted in Asian populations have identified novel risk loci for systemic lupus erythematosus (SLE). Here, we genotyped 10 single-nucleotide polymorphisms (SNPs) in eight such loci and investigated their disease associations in three independent Caucasian SLE case–control cohorts recruited from Sweden, Finland and the United States. The disease associations of the SNPs in ETS1, IKZF1, LRRC18-WDFY4, RASGRP3, SLC15A4, TNIP1 and 16p11.2 were replicated, whereas no solid evidence of association was observed for the 7q11.23 locus in the Caucasian cohorts. SLC15A4 was significantly associated with renal involvement in SLE. The association of TNIP1 was more pronounced in SLE patients with renal and immunological disorder, which is corroborated by two previous studies in Asian cohorts. The effects of all the associated SNPs, either conferring risk for or being protective against SLE, were in the same direction in Caucasians and Asians. The magnitudes of the allelic effects for most of the SNPs were also comparable across different ethnic groups. On the contrary, remarkable differences in allele frequencies between Caucasian and Asian populations were observed for all associated SNPs. In conclusion, most of the novel SLE risk loci identified by GWASs in Asian populations were also associated with SLE in Caucasian populations. We observed both similarities and differences with respect to the effect sizes and risk allele frequencies across ethnicities.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-20 of 20
Type of publication
journal article (17)
other publication (1)
conference paper (1)
research review (1)
Type of content
peer-reviewed (17)
other academic/artistic (3)
Author/Editor
Criswell, Lindsey A. (12)
Rönnblom, Lars (10)
Syvänen, Ann-Christi ... (9)
Gregersen, Peter K. (9)
Gunnarsson, Iva (8)
Rantapää-Dahlqvist, ... (8)
show more...
Nordmark, Gunnel (6)
Vyse, Timothy J. (6)
Sandling, Johanna K. (6)
Truedsson, Lennart (5)
Sturfelt, Gunnar (5)
Alarcón-Riquelme, Ma ... (5)
Gaffney, Patrick M. (5)
Padyukov, Leonid (5)
Petri, Michelle (5)
Seldin, Michael F (5)
Bengtsson, Anders (4)
Svenungsson, Elisabe ... (4)
Jönsen, Andreas (4)
Tsao, Betty P. (4)
Langefeld, Carl D. (4)
Harley, John B. (4)
Manzi, Susan (4)
Martin, Javier (3)
Hammarström, Lennart (3)
Eloranta, Maija-Leen ... (3)
Wang, Chuan (3)
Kelly, Jennifer A. (3)
Edberg, Jeffrey C. (3)
Jacob, Chaim O. (3)
Kimberly, Robert P. (3)
Moser, Kathy L. (3)
Sigurdsson, Snaevar (3)
Du, Likun (2)
Pan-Hammarström, Qia ... (2)
Kaufman, Kenneth M. (2)
Guthridge, Joel M. (2)
Brown, Elizabeth E. (2)
Ramsey-Goldman, Rosa ... (2)
Reveille, John D. (2)
Vila, Luis M. (2)
Gilkeson, Gary S. (2)
James, Judith A. (2)
Merrill, Joan T. (2)
Eriksson, Catharina (2)
Hamsten, Anders (2)
Alarcón, Graciela S. (2)
Bengtsson, Anders A. (2)
Kosoy, Roman (2)
Yin, Hong (2)
show less...
University
Uppsala University (13)
Karolinska Institutet (11)
Umeå University (8)
Lund University (7)
Linköping University (6)
University of Gothenburg (3)
show more...
Swedish University of Agricultural Sciences (2)
Stockholm University (1)
show less...
Language
English (20)
Research subject (UKÄ/SCB)
Medical and Health Sciences (12)
Natural sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view