SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bergstedt Kerstin) "

Search: WFRF:(Bergstedt Kerstin)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bergstedt, Bosse, et al. (author)
  • En Akademi för livet
  • 1998
  • In: Tradition og vision i nordisk folkeoplysning. Jubileumsbogen Nordens folkliga akademi 30 år. - 9197218359 ; , s. 12-25
  • Book chapter (other academic/artistic)
  •  
2.
  • Bergstedt, Kerstin, et al. (author)
  • Initiation of protein synthesis and heat-shock protein-72 expression in the rat brain following severe insulin-induced hypoglycemia
  • 1993
  • In: Acta Neuropathologica. - 0001-6322. ; 86:2, s. 145-153
  • Journal article (peer-reviewed)abstract
    • Following stress such as heat shock or transient cerebral ischemia, global brain protein synthesis initiation is depressed through modulation of eucaryotic initiation factor (eIF) activities, and modification of ribosomal subunits. Concomitantly, expression of a certain class of mRNA, heat-shock protein (HSP) mRNA, is induced. Here we report that the activity of eucaryotic initiation factor-2 (eIF-2), a protein that participates in the regulation of a rate-limiting initiation step of protein synthesis, transiently decreases following insulin-induced severe hypoglycemia in the rat brain neocortex. Expression of HSP 72, a 72-kDa HSP, in surviving neurons was seen at 1-7 days of recovery following 30 min of hypoglycemic coma, but not at 1 h and 6 h of recovery. In the neocortex, HSP 72 was first seen in layer IV, and later also in surviving neurons in layer II. In the CA1 region and in the crest of dentate gyrus, HSP 72 expression was evident in cells adjacent to irreversibly damaged neurons. In the CA3 region and the hilus of dentate gyrus, HSP 72 was expressed in a few scattered neurons. In septal nucleus, HSP 72 was expressed in a lateral to medial fashion over a period of 1-3 days of recovery. We conclude that severe insulin-induced hypoglycemia induces a stress response in neurons in the recovery phase, including inhibition of protein synthesis initiation, depression of eIF-2 activity, and a delayed and prolonged expression of HSP 72 in surviving neurons. The HSP 72 expression may be a protective response to injurious stress.
  •  
3.
  • Bergstedt, Kerstin, et al. (author)
  • Postischaemic changes in protein synthesis in the rat brain : effects of hypothermia
  • 1993
  • In: Experimental Brain Research. - 0014-4819. ; 95:1, s. 91-99
  • Journal article (peer-reviewed)abstract
    • Protein synthesis, measured as [14C]-leucine incorporation into proteins, was studied in the normothermic rat brain following 15 min of transient cerebral ischaemia and 1 h, 24 h and 48 h of recirculation, and in the hypothermic (33°C) brain following 1 h and 48 h of recirculation. Ischaemia was induced by bilateral common carotid occlusion combined with hypotension. Following normothermic ischaemia, incorporation of [14C]-leucine was depressed by 40-80% at 1 h of recirculation in all brain regions studied. At 48 h postischaemia, incorporation returned to normal or above normal levels in the inner layers of neocortex, the CA3 region, the striatum and the dentate gyrus, while in the outer layers of neocortex and in the hippocampal CA1 region the incorporation was persistently decreased by 26% and 40% respectively. At 24 and 48 h postischaemia, protein synthesis in the CA1 region and the striatum could be attributed to proliferating microglia. Intra-ischaemic hypothermia ameliorated the persistent depression of protein synthesis in the CA1 region at 48 h postischaemia, and a two-fold increase compared to the normothermic group was observed both in the CA1 region and the striatum. In the cortex, eucaryotic initiation factor 2 activity transiently decreased at 30 min postischaemia. In animals subjected to intra-ischaemic hypothermia, the eucaryotic initiation factor 2 activity was reduced by 50% of control at 30 min of recirculation compared with 77% in normothermic animals. We conclude that the postischaemic depression of protein synthesis is in part caused by a decrease in eucaryotic initiation factor 2 activity. The early postischaemic depression may reflect a reaction of the tissue to stress, while the late persistent depression, which is normalised by intra-ischaemic hypothermia, may be related to the mechanism of cell death.
  •  
4.
  • Wieloch, Tadeusz, et al. (author)
  • Protein phosphorylation and the regulation of mRNA translation following cerebral ischemia
  • 1993. - C
  • In: Neurobiology of Ischemic Brain Damage. - 0079-6123. - 9780444896032 ; 96, s. 179-191
  • Book chapter (peer-reviewed)abstract
    • This chapter discusses the changes in protein phosphorylation following ischemia, with particular reference to the regulation of the initiation of protein synthesis. Transient cerebral ischemia seems to induce a post-ischemic imbalance between protein kinase and protein phosphatase activities, leading to a net dephosphorylation of proteins in the vulnerable neurons. This imbalance may lead to the persistent changes in processes crucial for neuronal survival such as post-ischemic protein synthesis. The depression of protein synthesis after an ischemic insult most probably is because of a decreased guanine nucleotide exchange factor (GEF) activity, leading to a limited availability of eukaryotic initiation factors (eIF-2) for initiation complex formation. The inhibition of GEF activity in the vulnerable regions could in turn be because of dephosphorylation of GEF, possibly because of tyrosine phosphatase activation and a decreased casein kinase II activity. Post-ischemic inhibition of protein kinase C and calcium calmodulin kinase II may in addition depress eIF-4 activity leading to a selective translation of mRNA such as heat shock mRNA.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view