SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Berry James D.) "

Search: WFRF:(Berry James D.)

  • Result 1-25 of 36
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
6.
  • 2017
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Journal article (peer-reviewed)
  •  
7.
  • 2019
  • Journal article (peer-reviewed)
  •  
8.
  • Arndt, D. S., et al. (author)
  • State of the Climate in 2016
  • 2017
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Journal article (peer-reviewed)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
9.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
10.
  •  
11.
  •  
12.
  • Abe, O, et al. (author)
  • Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials
  • 2005
  • In: The Lancet. - 1474-547X. ; 365:9472, s. 1687-1717
  • Journal article (peer-reviewed)abstract
    • Background Quinquennial overviews (1985-2000) of the randomised trials in early breast cancer have assessed the 5-year and 10-year effects of various systemic adjuvant therapies on breast cancer recurrence and survival. Here, we report the 10-year and 15-year effects. Methods Collaborative meta-analyses were undertaken of 194 unconfounded randomised trials of adjuvant chemotherapy or hormonal therapy that began by 1995. Many trials involved CMF (cyclophosphamide, methotrexate, fluorouracil), anthracycline-based combinations such as FAC (fluorouracil, doxombicin, cyclophosphamide) or FEC (fluorouracil, epirubicin, cyclophosphamide), tamoxifen, or ovarian suppression: none involved taxanes, trastuzumab, raloxifene, or modem aromatase inhibitors. Findings Allocation to about 6 months of anthracycline-based polychemotherapy (eg, with FAC or FEC) reduces the annual breast cancer death rate by about 38% (SE 5) for women younger than 50 years of age when diagnosed and by about 20% (SE 4) for those of age 50-69 years when diagnosed, largely irrespective of the use of tamoxifen and of oestrogen receptor (ER) status, nodal status, or other tumour characteristics. Such regimens are significantly (2p=0 . 0001 for recurrence, 2p<0 . 00001 for breast cancer mortality) more effective than CMF chemotherapy. Few women of age 70 years or older entered these chemotherapy trials. For ER-positive disease only, allocation to about 5 years of adjuvant tamoxifen reduces the annual breast cancer death rate by 31% (SE 3), largely irrespective of the use of chemotherapy and of age (<50, 50-69, &GE; 70 years), progesterone receptor status, or other tumour characteristics. 5 years is significantly (2p<0 . 00001 for recurrence, 2p=0 . 01 for breast cancer mortality) more effective than just 1-2 years of tamoxifen. For ER-positive tumours, the annual breast cancer mortality rates are similar during years 0-4 and 5-14, as are the proportional reductions in them by 5 years of tamoxifen, so the cumulative reduction in mortality is more than twice as big at 15 years as at 5 years after diagnosis. These results combine six meta-analyses: anthracycline-based versus no chemotherapy (8000 women); CMF-based versus no chemotherapy (14 000); anthracycline-based versus CMF-based chemotherapy (14 000); about 5 years of tamoxifen versus none (15 000); about 1-2 years of tamoxifen versus none (33 000); and about 5 years versus 1-2 years of tamoxifen (18 000). Finally, allocation to ovarian ablation or suppression (8000 women) also significantly reduces breast cancer mortality, but appears to do so only in the absence of other systemic treatments. For middle-aged women with ER-positive disease (the commonest type of breast cancer), the breast cancer mortality rate throughout the next 15 years would be approximately halved by 6 months of anthracycline-based chemotherapy (with a combination such as FAC or FEC) followed by 5 years of adjuvant tamoxifen. For, if mortality reductions of 38% (age <50 years) and 20% (age 50-69 years) from such chemotherapy were followed by a further reduction of 31% from tamoxifen in the risks that remain, the final mortality reductions would be 57% and 45%, respectively (and, the trial results could well have been somewhat stronger if there had been full compliance with the allocated treatments). Overall survival would be comparably improved, since these treatments have relatively small effects on mortality from the aggregate of all other causes. Interpretation Some of the widely practicable adjuvant drug treatments that were being tested in the 1980s, which substantially reduced 5-year recurrence rates (but had somewhat less effect on 5-year mortality rates), also substantially reduce 15-year mortality rates. Further improvements in long-term survival could well be available from newer drugs, or better use of older drugs.
  •  
13.
  • Blunden, Jessica, et al. (author)
  • State of the Climate in 2012
  • 2013
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Journal article (peer-reviewed)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
14.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
15.
  • Wang, Z., et al. (author)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Journal article (peer-reviewed)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
16.
  • Hudson, Lawrence N, et al. (author)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Journal article (peer-reviewed)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
17.
  •  
18.
  • Ades, M., et al. (author)
  • Global Climate : in State of the climate in 2019
  • 2020
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Journal article (peer-reviewed)
  •  
19.
  • Ades, M., et al. (author)
  • GLOBAL CLIMATE
  • 2020
  • In: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Journal article (peer-reviewed)
  •  
20.
  • Fresard, Laure, et al. (author)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • In: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Journal article (peer-reviewed)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
21.
  • Nicolas, Aude, et al. (author)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • In: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Journal article (peer-reviewed)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
22.
  • Hudson, Lawrence N., et al. (author)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • In: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Journal article (peer-reviewed)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
23.
  • Axfors, Cathrine, et al. (author)
  • Association between convalescent plasma treatment and mortality in COVID-19 : a collaborative systematic review and meta-analysis of randomized clinical trials
  • 2021
  • In: BMC Infectious Diseases. - : BioMed Central (BMC). - 1471-2334. ; 21:1
  • Research review (peer-reviewed)abstract
    • Background: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, ). Methods: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. Results: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I-2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. Conclusions: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care.
  •  
24.
  •  
25.
  • Muscarella, Robert, et al. (author)
  • The global abundance of tree palms
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Journal article (peer-reviewed)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 36
Type of publication
journal article (29)
research review (2)
Type of content
peer-reviewed (29)
other academic/artistic (2)
Author/Editor
Brown, A. (7)
Singh, R. (6)
Jones, R. (6)
Mohan, M. (6)
King, M. (5)
Lopes, L. (5)
show more...
Losada, M. (5)
Negri, G. (5)
Robson, A. (5)
Romano, M. (5)
Morton, A. (5)
Davies, E. (5)
Martin, J. (5)
Aytac, E (5)
Campain, N (5)
Davies, RJ (5)
Hompes, R (5)
Lakkis, Z (5)
Maciel, J (5)
Shaikh, (5)
Tsarkov, P (5)
Sharma, S. (5)
Silva, M. (5)
Bergh, J (5)
Jones, M. (5)
Moore, R. (5)
Russ, J. (5)
Shaw, S. (5)
Hogan, J. (5)
Kisiel, A. (5)
Roy, C. (5)
Sharma, N. (5)
Wang, Y. (5)
Scott, R. (5)
Grassi, T. (5)
Tuveri, M. (5)
Nowak, K. (5)
Costa, M. (5)
Allan, Rob (5)
Becker, Andreas (5)
Benedetti, Angela (5)
Berry, David I. (5)
Christiansen, Hanne ... (5)
Christy, John R. (5)
De Jeu, Richard A.M. (5)
Dorigo, Wouter A. (5)
James, S. (5)
Gill, C. (5)
Clark, J. (5)
Patel, P. (5)
show less...
University
Uppsala University (13)
Karolinska Institutet (10)
Lund University (9)
University of Gothenburg (8)
Umeå University (6)
Stockholm University (5)
show more...
Chalmers University of Technology (4)
Swedish University of Agricultural Sciences (2)
Luleå University of Technology (1)
Halmstad University (1)
Mid Sweden University (1)
Södertörn University (1)
Linnaeus University (1)
show less...
Language
English (36)
Research subject (UKÄ/SCB)
Natural sciences (16)
Medical and Health Sciences (14)
Engineering and Technology (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view