SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Blaak E E) "

Search: WFRF:(Blaak E E)

  • Result 1-25 of 53
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhang, X., et al. (author)
  • Human total, basal and activity energy expenditures are independent of ambient environmental temperature
  • 2022
  • In: iScience. - : Elsevier Inc.. - 2589-0042. ; 25:8
  • Journal article (peer-reviewed)abstract
    • Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (−10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18–25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures.
  •  
2.
  • Kootte, R. S., et al. (author)
  • Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition
  • 2017
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 26:4, s. 611-619
  • Journal article (peer-reviewed)abstract
    • The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.
  •  
3.
  • Boon, Hanneke, 1981-, et al. (author)
  • Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients
  • 2008
  • In: Diabetologia. - Heidelberg : Springer Berlin/Heidelberg. - 0012-186X .- 1432-0428. ; 51:10, s. 1893-1900
  • Journal article (peer-reviewed)abstract
    • AIMS/HYPOTHESIS: The 5'-AMP-activated protein kinase (AMPK) pathway is intact in type 2 diabetic patients and is seen as a target for diabetes treatment. In this study, we aimed to assess the impact of the AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) on both glucose and fatty acid metabolism in vivo in type 2 diabetic patients. METHODS: Stable isotope methodology and blood and muscle biopsy sampling were applied to assess blood glucose and fatty acid kinetics following continuous i.v. infusion of AICAR (0.75 mg kg(-1) min(-1)) and/or NaCl (0.9%) in ten male type 2 diabetic patients (age 64 +/- 2 years; BMI 28 +/- 1 kg/m(2)). RESULTS: Plasma glucose rate of appearance (R (a)) was reduced following AICAR administration, while plasma glucose rate of disappearance (R (d)) was similar in the AICAR and control test. Consequently, blood glucose disposal (R (d) expressed as a percentage of R (a)) was increased following AICAR infusion (p < 0.001). Accordingly, a greater decline in plasma glucose concentration was observed following AICAR infusion (p < 0.001). Plasma NEFA R (a) and R (d) were both significantly reduced in response to AICAR infusion, and were accompanied by a significant decline in plasma NEFA concentration. Although AMPK phosphorylation in skeletal muscle was not increased, we observed a significant increase in acetyl-CoA carboxylase phosphorylation (p < 0.001). CONCLUSIONS/INTERPRETATION: The i.v. administration of AICAR reduces hepatic glucose output, thereby lowering blood glucose concentrations in vivo in type 2 diabetic patients. Furthermore, AICAR administration stimulates hepatic fatty acid oxidation and/or inhibits whole body lipolysis, thereby reducing plasma NEFA concentration. © 2008 The Author(s).
  •  
4.
  • Gjelstad, I. M. F., et al. (author)
  • Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance
  • 2012
  • In: Archives of Physiology and Biochemistry. - : Informa UK Limited. - 1381-3455 .- 1744-4160. ; 118:1, s. 22-30
  • Journal article (peer-reviewed)abstract
    • The perilipin proteins enclose intracellular lipid droplets. We describe the mRNA expression of the five perilipins in human skeletal muscle in relation to fatty acid supply, exercise and energy balance. We observed that all perilipins were expressed in skeletal muscle biopsies with the highest mRNA levels of perilipin 2, 4 and 5. Cultured myotubes predominantly expressed perilipin 2 and 3. In vitro, incubation of myotubes with fatty acids enhanced mRNA expression of perilipin 1, 2 and 4. In vivo, low fat diet increased mRNA levels of perilipin 3 and 4. Endurance training, but not strength training, enhanced the expression of perilipin 2 and 3. Perilipin 1 mRNA correlated positively with body fat mass, whereas none of the perilipins were associated with insulin sensitivity. In conclusion, all perilipins mRNAs were expressed in human skeletal muscle. Diet as well as endurance exercise modulated the expression of perilipins.
  •  
5.
  •  
6.
  • Bickerton, A. S. T., et al. (author)
  • Adipose tissue fatty acid metabolism in insulin-resistant men
  • 2008
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 51:8, s. 1466-1474
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis Increased NEFA production and concentrations may underlie insulin resistance. We examined systemic and adipose tissue NEFA metabolism in insulin-resistant overweight men (BM1 25-35 kg/m(2)). Methods In a cohort study we examined NEFA concentrations in men in the upper quartile of fasting insulin (n = 124) and in men with fasting insulin below the median (n 159). In a metabolic study we examined NEFA metabolism in the fasting and postprandial states, in ten insulin-resistant men and ten controls. Results In the cohort study, fasting NEFA concentrations were not significantly different between the two groups (median values: insulin-resistant men, 410 mu mol/l; controls, 445 2 mu mol/l). However, triacylglycerol concentrations differed markedly (1.84 vs 1.18 mmol/l respectively, p<0.001). In the metabolic study, arterial NEFA concentrations again did not differ between groups, whereas triacylglycerol concentrations were significantly higher in insulin-resistant men. Systemic NEFA production and the release of NEFA from subcutaneous adipose tissue, expressed per unit of fat mass, were both reduced in insulin-resistant men compared with controls (fasting values by 32%, p=0.02, and 44%, p=0.04 respectively). 3-Hydroxybutyrate concentrations, an index of hepatic fat oxidation and ketogenesis, were lower (p=0.03). Conclusions/interpretation Adipose tissue NEFA output is not increased (per unit weight of tissue) in insulin resistance. On the contrary, it appears to be suppressed by high fasting insulin concentrations. Alterations in triacylglycerol metabolism are more marked than those in NEFA metabolism. and are indicative of altered metabolic partitioning of fatty acids (decreased oxidation, increased esterification) in the liver.
  •  
7.
  •  
8.
  • Blaak, E E, et al. (author)
  • Impact of postprandial glycaemia on health and prevention of disease.
  • 2012
  • In: Obesity Reviews. - 1467-7881. ; 13:10, s. 923-984
  • Journal article (peer-reviewed)abstract
    • Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise perfomance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
  •  
9.
  • Boon, Hanneke, 1981-, et al. (author)
  • Substrate source utilisation in long-term diagnosed type 2 diabetes patients at rest, and during exercise and subsequent recovery
  • 2007
  • In: Diabetologia. - Heidelberg : Springer Berlin/Heidelberg. - 0012-186X .- 1432-0428. ; 50:1, s. 103-112
  • Journal article (peer-reviewed)abstract
    • AIMS/HYPOTHESIS: Disturbances in substrate source metabolism and, more particularly, in fatty acid metabolism, play an important role in the aetiology and progression of type 2 diabetes. However, data on substrate source utilisation in type 2 diabetes are inconclusive. METHODS: [U-(13)C]palmitate and [6,6-(2)H(2)]glucose tracers were used to assess plasma NEFA and glucose oxidation rates and to estimate the use of muscle- and/or lipoprotein-derived triacylglycerol and muscle glycogen. Subjects were ten male patients who had a long-term (7 +/- 1 years) diagnosis of type 2 diabetes and were overweight, and ten matched healthy, male control subjects. Muscle biopsy samples were collected before and after exercise to assess muscle fibre type-specific intramyocellular lipid and glycogen content. RESULTS: At rest and during exercise, the diabetes patients had greater values than the controls for palmitate rate of appearance (Ra) (rest, 2.46 +/- 0.18 and 1.85 +/- 0.20 respectively; exercise, 3.71 +/- 0.36 and 2.84 +/- 0.20 micromol kg(-1) min(-1)) and rate of disappearance (Rd) (rest, 2.45 +/- 0.18 and 1.83 +/- 0.20; exercise, 3.64 +/- 0.35 and 2.80 +/- 0.20 micromol kg(-1) min(-1) respectively). This was accompanied by significantly higher fat oxidation rates at rest and during recovery in the diabetes patients (rest, 0.11 +/- 0.01 in diabetes patients and 0.09 +/- 0.01 in controls; recovery, 0.13 +/- 0.01 and 0.11 +/- 0.01 g/min respectively), despite significantly greater plasma glucose Ra, Rd and circulating plasma glucose concentrations. Furthermore, exercise significantly lowered plasma glucose concentrations in the diabetes patients, as a result of increased blood glucose disposal. CONCLUSION: This study demonstrates that substrate source utilisation in long-term-diagnosed type 2 diabetes patients, in whom compensatory hyperinsulinaemia is no longer present, shifts towards an increase in whole-body fat oxidation rate and is accompanied by disturbances in fat and carbohydrate handling. © 2006 Springer-Verlag.
  •  
10.
  • Delgado-Lista, J., et al. (author)
  • A gene variation (rs12691) in the CCAT/enhancer binding protein alpha modulates glucose metabolism in metabolic syndrome
  • 2013
  • In: NMCD. Nutrition Metabolism and Cardiovascular Diseases. - : Elsevier BV. - 0939-4753 .- 1590-3729. ; 23:5, s. 417-423
  • Journal article (peer-reviewed)abstract
    • Background and aims: CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results: Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion: The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.
  •  
11.
  • Delgado-Lista, J., et al. (author)
  • Pleiotropic effects of TCF7L2 gene variants and its modulation in the metabolic syndrome : From the LIPGENE study
  • 2011
  • In: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 214:1, s. 110-116
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis: Variants of the TCF7L2 gene predict the development of type 2 diabetes mellitus (T2DM). We investigated the associations between gene variants of TCF7L2 and clinical features of the metabolic syndrome (MetS) (an entity often preceeding T2DM), and their interaction with non-genetic factors, including plasma saturated fatty acids (SFA) concentration and insulin resistance (IR). Methods: Fasting lipid profiles, insulin sensitivity, insulin secretion, anthropometrics, blood pressure and 10 gene variations of the TCF7L2 gene were determined in 450 subjects with MetS. Results: Several single nucleotide polymorphisms (SNP) showed phenotypic associations independent of SFA or IR. Carriers of the rare T allele of rs7903146, and of three other SNPs in linkage disequilibrium with rs7903146, had lower blood pressure and insulin secretion. High IR and the presence of the T-allele of rs7903146 acted synergistically to define those with reduced insulin secretion. Carriers of the minor allele of rs290481 exhibited an altered lipid profile, with increased plasma levels of apolipoprotein B, non-esterified fatty acids, cholesterol and apolipoprotein B in triglyceride rich lipoproteins, and LDL cholesterol. Carriers of the minor allele of rs11196224 that had higher plasma SFA levels showed elevated procoagulant/proinflammatory biomarkers, impaired insulin secretion and increased IR, whereas carriers of the minor allele of rs17685538 with high plasma SFA levels exhibited higher blood pressure. Conclusions/interpretation: SNP in the TCF7L2 gene are associated with differences in insulin secretion, blood pressure, blood lipids and coagulation in MetS patients, and may be modulated by SFA in plasma or IR.
  •  
12.
  •  
13.
  • Hebebrand, J., et al. (author)
  • A Proposal of the European Association for the Study of Obesity to Improve the ICD-11 Diagnostic Criteria for Obesity Based on the Three Dimensions Etiology, Degree of Adiposity and Health Risk
  • 2017
  • In: Obesity Facts. - : S. Karger AG. - 1662-4025 .- 1662-4033. ; 10:4, s. 284-307
  • Journal article (peer-reviewed)abstract
    • Diagnostic criteria for complex medical conditions caused by a multitude of both genetic and environmental factors should be descriptive and avoid any attribution of causality. Furthermore, the wording used to describe a disorder should be evidence-based and avoid stigmatization of the affected individuals. Both terminology and categorizations should be readily comprehensible for healthcare professionals and guide clinical decision making. Uncertainties with respect to diagnostic issues and their implications may be addressed to direct future clinical research. In this context, the European Association of the Study of Obesity (EASO) considers it an important endeavor to review the current ICD-11 Beta Draft for the definition of overweight and obesity and to propose a substantial revision. We aim to provide an overview of the key issues that we deem relevant for the discussion of the diagnostic criteria. We first discuss the current ICD-10 criteria and those proposed in the ICD 11 Beta Draft. We conclude with our own proposal for diagnostic criteria, which we believe will improve the assessment of patients with obesity in a clinically meaningful way. (C) 2017 The Author(s) Published by S. Karger GmbH, Freiburg
  •  
14.
  •  
15.
  •  
16.
  • Jans, A., et al. (author)
  • Impact of dietary fat quantity and quality on skeletal muscle fatty acid metabolism in subjects with the metabolic syndrome
  • 2012
  • In: Metabolism. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 61:11, s. 1554-1565
  • Journal article (peer-reviewed)abstract
    • Insulin resistance is characterized by disturbances in lipid metabolism in skeletal muscle. Our aim was to investigate whether gene expression and fatty acid (FA) profile of skeletal muscle lipids are affected by diets differing in fat quantity and quality in subjects with the metabolic syndrome (MetS) and varying degrees of insulin sensitivity. 84 subjects (age 57.3 ± 0.9 y, BMI 30.9 ± 0.4 kg/m 2, 42 M/42 F) were randomly assigned to one of four iso-energetic diets: high-SFA (HSFA); high-MUFA (HMUFA) or two low-fat, high-complex carbohydrate diets, supplemented with 1.24 g/day of long-chain n-3 PUFA (LFHCCn-3) or control oil (LFHCC) for 12 weeks. In a subgroup of men (n = 26), muscle TAG, DAG, FFA and phospholipid contents were determined including their fractional synthetic rate (FSR) and FA composition at fasting and 4 h after consumption of a high-fat mixed-meal, both pre- and post-intervention. Genes involved in lipogenesis were downregulated after HMUFA (mean fold change - 1.3) and after LFHCCn-3 (fold change - 1.7) in insulin resistant subjects (< median of (S I)), whereas in insulin sensitive subjects (> median of insulin sensitivity) the opposite effect was shown (fold change + 1.6 for both diets). HMUFA diet tended to decrease FSR in TAG (P =.055) and DAG (P =.066), whereas the LFHCCn-3 diet reduced TAG content (P =.032). In conclusion, HMUFA and LFHCCn-3 diets reduced the expression of the lipogenic genes in skeletal muscle of insulin resistant subjects, whilst HMUFA reduced the fractional synthesis rate of DAG and TAG and LFHCC n-3 the TAG content. Our data indicate that these diets may reduce muscle fat accumulation by affecting the balance between FA synthesis, storage and oxidation.
  •  
17.
  • Jocken, Johan W E, et al. (author)
  • Adipose TriGlyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) protein expression is decreased in the obese insulin resistant state.
  • 2007
  • In: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 92:6, s. 2292-2299
  • Journal article (peer-reviewed)abstract
    • Obesity is associated with increased triacylglycerol (TAG) storage in adipose tissue and insulin resistance. The mobilization of stored TAG is mediated by hormone-sensitive lipase (HSL) and the recently discovered adipose triglyceride lipase (ATGL). The aim of the present study was to examine whether ATGL and HSL mRNA and protein expression are altered in insulin-resistant conditions. In addition, we investigated whether a possible impaired expression could be reversed by a period of weight reduction. METHODS: Adipose tissue biopsies were taken from obese subjects (n = 44) with a wide range of insulin resistance, before and just after a 10-wk hypocaloric diet. ATGL and HSL protein and mRNA expression was determined by Western blot and quantitative RT-PCR, respectively. RESULTS: Fasting insulin levels and the degree of insulin resistance (using the homeostasis model assessment index for insulin resistance) were negatively correlated with ATGL and HSL protein expression, independent of age, gender, fat cell size, and body composition. Both mRNA and protein levels of ATGL and HSL were reduced in insulin-resistant compared with insulin-sensitive subjects (P < 0.05). Weight reduction significantly decreased ATGL and HSL mRNA and protein expression. A positive correlation between the decrease in leptin and the decrease in ATGL protein level after weight reduction was observed. Finally, ATGL and HSL mRNA and protein levels seem to be highly correlated, indicating a tight coregulation and transcriptional control. CONCLUSIONS: In obese subjects, insulin resistance and hyperinsulinemia are strongly associated with ATGL and HSL mRNA and protein expression, independent of fat mass. Data on weight reduction indicated that also other factors (e.g. leptin) relate to ATGL and HSL protein expression.
  •  
18.
  • Jocken, Johan W. E., et al. (author)
  • Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type 2 diabetic men and men with normal glucose tolerance
  • 2013
  • In: Diabetologia. - Heidelberg : Springer Berlin/Heidelberg. - 0012-186X .- 1432-0428. ; 56:10, s. 2255-2265
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis: Impaired regulation of lipolysis and accumulation of lipid intermediates may contribute to obesity-related insulin resistance and type 2 diabetes mellitus. We investigated insulin-mediated suppression of lipolysis in abdominal subcutaneous adipose tissue (AT) and skeletal muscle (SM) of obese men with normal glucose tolerance (NGT) and obese type 2 diabetic men. Methods: Eleven NGT men and nine long-term diagnosed type 2 diabetic men (7 ± 1 years), matched for age (58 ± 2 vs 62 ± 2 years), BMI (31.4 ± 0.6 vs 30.5 ± 0.6 kg/m2) and V × O 2 max (28.9 ± 1.5 vs 29.5 ± 2.4 ml kg-1 min-1) participated in this study. Interstitial glycerol concentrations in AT and SM were assessed using microdialysis during a 1 h basal period and a 6 h stepwise hyperinsulinaemic-euglycaemic clamp (8, 20 and 40 mU m-2 min -1). AT and SM biopsies were collected to investigate underlying mechanisms. Results: Hyperinsulinaemia suppressed interstitial SM glycerol concentrations less in men with type 2 diabetes (-7 ± 6%, -13 ± 9% and -27 ± 9%) compared with men with NGT (-21 ± 7%, -38 ± 8% and -53 ± 8%) (p = 0.014). This was accompanied by increased circulating fatty acid and glycerol concentrations, a lower glucose infusion rate (21.8 ± 3.1 vs 30.5 ± 2.0 μmol kg body weight-1 min-1; p < 0.05), higher hormone-sensitive lipase (HSL) serine 660 phosphorylation, increased saturated diacylglycerol (DAG) lipid species in the muscle membrane and increased protein kinase C (PKC) activation in type 2 diabetic men vs men with NGT. No significant differences in insulin-mediated reduction in AT interstitial glycerol were observed between groups. Conclusions/interpretation: Our results suggest that a blunted insulin-mediated suppression of SM lipolysis may promote the accumulation of membrane saturated DAG, aggravating insulin resistance, at least partly mediated by PKC. This may represent an important mechanism involved in the progression of insulin resistance towards type 2 diabetes. Trial registration: ClinicalTrials.gov NCT01680133 © 2013 The Author(s).
  •  
19.
  • Massier, Lucas, et al. (author)
  • An integrated single cell and spatial transcriptomic map of human white adipose tissue
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Single-cell studies of human white adipose tissue (WAT) provide insights into the specialized cell types in the tissue. Here the authors combine publicly available and newly generated high-resolution and bulk transcriptomic results from multiple human datasets to provide a comprehensive cellular map of white adipose tissue. To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
  •  
20.
  •  
21.
  • Tierney, A C, et al. (author)
  • Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome-LIPGENE : a European randomized dietary intervention study
  • 2011
  • In: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 35:6, s. 800-809
  • Journal article (peer-reviewed)abstract
    • Background:Excessive energy intake and obesity lead to the metabolic syndrome (MetS). Dietary saturated fatty acids (SFAs) may be particularly detrimental on insulin sensitivity (SI) and on other components of the MetS.Objective:This study determined the relative efficacy of reducing dietary SFA, by isoenergetic alteration of the quality and quantity of dietary fat, on risk factors associated with MetS.Design:A free-living, single-blinded dietary intervention study.Subjects and Methods:MetS subjects (n=417) from eight European countries completed the randomized dietary intervention study with four isoenergetic diets distinct in fat quantity and quality: high-SFA; high-monounsaturated fatty acids and two low-fat, high-complex carbohydrate (LFHCC) diets, supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) (1.2 g per day) or placebo for 12 weeks. SI estimated from an intravenous glucose tolerance test (IVGTT) was the primary outcome measure. Lipid and inflammatory markers associated with MetS were also determined.Results:In weight-stable subjects, reducing dietary SFA intake had no effect on SI, total and low-density lipoprotein cholesterol concentration, inflammation or blood pressure in the entire cohort. The LFHCC n-3 PUFA diet reduced plasma triacylglycerol (TAG) and non-esterified fatty acid concentrations (P<0.01), particularly in men.Conclusion:There was no effect of reducing SFA on SI in weight-stable obese MetS subjects. LC n-3 PUFA supplementation, in association with a low-fat diet, improved TAG-related MetS risk profiles.
  •  
22.
  •  
23.
  • Blundell, John E, et al. (author)
  • Variations in the Prevalence of Obesity Among European Countries, and a Consideration of Possible Causes.
  • 2017
  • In: Obesity facts. - : S. Karger AG. - 1662-4033 .- 1662-4025. ; 10:1, s. 25-37
  • Journal article (peer-reviewed)abstract
    • Over the last 10 years the prevalence of obesity across the European continent has in general been rising. With the exception of a few countries where a levelling-off can be perceived, albeit at a high level, this upward trend seems likely to continue. However, considerable country to country variation is noticeable, with the proportion of people with obesity varying by 10% or more. This variation is intriguing and suggests the existence of different profiles of risk or protection factors operating in different countries. The identification of such protection factors could indicate suitable targets for interventions to help manage the obesity epidemic in Europe. This report is the output of a 2-day workshop on the 'Diversity of Obesity in Europe'. The workshop included 14 delegates from 12 different European countries. This report contains the contributions and discussions of the materials and viewpoints provided by these 14 experts; it is not the output of a single mind. However, such is the nature of scientific analysis regarding obesity that it is possible that a different set of 14 experts may have come to a different set of conclusions. Therefore the report should not be seen as a definitive statement of a stable situation. Rather it is a focus for discussion and comment, and a vehicle to drive forward further understanding and management of obesity in Europe.
  •  
24.
  • Boon, Hanneke, 1981-, et al. (author)
  • Substrate Source Use in Older, Trained Males after Decades of Endurance Training
  • 2007
  • In: Medicine & Science in Sports & Exercise. - Philadelphia, PA : Lippincott Williams & Wilkins. - 0195-9131 .- 1530-0315. ; 39:12, s. 2160-2170
  • Journal article (peer-reviewed)abstract
    • PURPOSE: The purpose of this study was to compare substrate source use in older, long-term exercising, endurance-trained males with sedentary controls. METHODS: [U-C]palmitate and [6,6-H2]glucose tracers were applied to assess plasma free fatty acid (FFA) and glucose oxidation rates, and to estimate muscle- and/or lipoprotein-derived triacylglycerol (TG) and muscle glycogen use. Subjects were 10 long-term exercising, endurance-trained males and 10 sedentary controls (age 57 +/- 1 and 60 +/- 2 yr, respectively). Muscle biopsy samples were collected before and after exercise to assess muscle fiber type-specific intramyocellular lipid and glycogen content. RESULTS: During exercise, plasma palmitate Ra, Rd, and Rox were significantly greater in the trained subjects compared with the controls (Ra: 0.36 +/- 0.02 and 0.25 +/- 0.02; Rd: 0.36 +/- 0.03 and 0.24 +/- 0.02; Rox: 0.31 +/- 0.02 and 0.20 +/- 0.02 mmol.min, respectively, P < 0.01). This resulted in greater plasma FFA and total fat oxidation rates in the trained versus sedentary subjects (P < 0.001). Muscle- and/or lipoprotein-derived TG use contributed 10 +/- 2 and 11 +/- 3% in the trained and control groups, respectively (NS). No significant net changes in muscle fiber lipid content were observed. CONCLUSIONS: Older, endurance-trained males oxidize more fat during moderate-intensity exercise than do sedentary controls. This greater total fat oxidation rate is attributed to a higher plasma FFA release, uptake, and oxidation rate. In contrast, intramyocellular triacylglycerol does not seem to represent a major substrate source during 1 h of moderate-intensity exercise in older trained or sedentary men. ©2007 The American College of Sports Medicine.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 53
Type of publication
journal article (53)
Type of content
peer-reviewed (49)
other academic/artistic (4)
Author/Editor
Blaak, Ellen E. (26)
Risérus, Ulf (25)
Drevon, Christian A. (22)
Roche, Helen M. (21)
Lovegrove, Julie A. (20)
Defoort, Catherine (20)
show more...
Lopez-Miranda, Jose (19)
Karlström, Brita (14)
Blaak, E. E. (14)
Kiec-Wilk, Beata (14)
Perez-Martinez, Pabl ... (11)
Tierney, Audrey C. (11)
Gjelstad, Ingrid M F (11)
Helal, Olfa (10)
Saris, Wim H. M. (9)
Roche, H. M. (9)
Drevon, C. A. (9)
Delgado-Lista, Javie ... (9)
Blaak, E (8)
Gulseth, Hanne L. (8)
Garcia-Rios, Antonio (8)
Phillips, Catherine ... (8)
Arner, P (7)
Lopez-Miranda, J. (7)
Dembinska-Kiec, Aldo ... (7)
Gjelstad, I. M. F. (6)
Lovegrove, J. A. (6)
Defoort, C. (6)
Shaw, Danielle I (6)
Ordovás, José M. (5)
Gulseth, H. L. (5)
Dembinska-Kiec, A. (5)
Lairon, Denis (5)
Planells, Richard (5)
Langin, D (4)
Boon, Hanneke, 1981- (4)
Ferguson, Jane F (4)
Astrup, A. (3)
Hercberg, Serge (3)
Blaak, EE (3)
McManus, Ross (3)
Cupples, L. Adrienne (3)
Perez-Martinez, P. (3)
Birkeland, K. I. (3)
Saris, W. H. (3)
Delgado-Lista, J. (3)
Goumidi, Louisa (3)
Leszczýnska-Golabek, ... (3)
McMonagle, Jolene (3)
van Hees, A. M. J. (3)
show less...
University
Uppsala University (31)
Karolinska Institutet (11)
University of Gothenburg (4)
Halmstad University (4)
Lund University (3)
Kristianstad University College (1)
show more...
Royal Institute of Technology (1)
Linköping University (1)
show less...
Language
English (53)
Research subject (UKÄ/SCB)
Medical and Health Sciences (15)
Natural sciences (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view