SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brennan Sean) "

Search: WFRF:(Brennan Sean)

  • Result 1-25 of 37
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Anney, Richard, et al. (author)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Journal article (peer-reviewed)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
2.
  • Anney, Richard, et al. (author)
  • Individual common variants exert weak effects on the risk for autism spectrum disorders.
  • 2012
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:21, s. 4781-92
  • Journal article (peer-reviewed)abstract
    • While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest.
  •  
3.
  • Casey, Jillian P, et al. (author)
  • A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder.
  • 2012
  • In: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 131:4, s. 565-579
  • Journal article (peer-reviewed)abstract
    • Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
  •  
4.
  • Douglas, Andrew, et al. (author)
  • Platelet-rich emboli are associated with von Willebrand factor levels and have poorer revascularization outcomes.
  • 2020
  • In: Journal of neurointerventional surgery. - : BMJ. - 1759-8486 .- 1759-8478. ; 12:6
  • Journal article (peer-reviewed)abstract
    • Platelets and von Willebrand factor (vWF) are key factors in thrombosis and thus are likely key components of acute ischemic stroke (AIS) emboli. We aimed to characterize platelet and vWF levels in AIS emboli and to assess associations between their expression levels and clinical and procedural information.Histopathological and immunohistochemical analysis of emboli collected as part of the multi-institutional RESTORE registry was performed. The composition of the emboli was quantified using Orbit Image Analysis machine learning software. Correlations between clot components and clinical and procedural information were assessed using the χ2 test.Ninety-one emboli samples retrieved from 63 patients were analyzed in the study. The mean platelet (CD42b) content of the clots was 33.9% and the mean vWF content of the clots was 29.8%. There was a positive correlation between platelet and vWF levels (ρ=0.564, p<0.001*, n=91). There was an inverse correlation between both platelets and vWF levels and percentage of red blood cells (RBCs) in the emboli (CD42b vs RBC: ρ=-0.535, p<0.001*, n=91; vWF vs RBC: ρ=-0.366, p<0.001*, n=91). Eighty-one percent of patients in the low platelet group had a good revascularization outcome (Thrombolysis in Cerebral Infarction 2c/3) compared with 58% in the high platelet group (χ2=5.856, p=0.016).Platelet and vWF levels in AIS emboli correlate with each other and both have an inverse relationship with RBC composition. Patients with platelet-rich clots have poorer revascularization outcomes.
  •  
5.
  • Pinto, Dalila, et al. (author)
  • Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.
  • 2014
  • In: American journal of human genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 94:5, s. 677-694
  • Journal article (peer-reviewed)abstract
    • Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0× 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7× 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
  •  
6.
  • Pinto, Dalila, et al. (author)
  • Functional impact of global rare copy number variation in autism spectrum disorders.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7304, s. 368-372
  • Journal article (peer-reviewed)abstract
    • The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
  •  
7.
  •  
8.
  •  
9.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
10.
  •  
11.
  •  
12.
  • Brennan, Seán J., 1995-, et al. (author)
  • Spectroscopic observations of progenitor activity 100 days before a Type Ibn supernova
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Journal article (peer-reviewed)abstract
    • Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible, due to an inherent lack of knowledge as to what stars experience supernovae and when they will explode. In this Letter we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq before the He-rich progenitor explodes as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core collapse. Complex He I emission line features are observed in the progenitor spectra, with a P Cygni-like profile, as well as an evolving broad base with velocities of the order of 10 000 km s−1. The luminosity and evolution of SN 2023fyq is consistent with a Type Ibn, reaching a peak r-band magnitude of −18.8 mag, although there is some uncertainty regarding the distance to the host, NGC 4388, which is located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present both prior to and after the explosion of SN 2023fyq, which suggests that this material survived the ejecta interaction. Broad [O I], C I, and the Ca II triplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova, rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star’s life, demonstrating that the progenitor is likely highly unstable before core collapse.
  •  
13.
  • Deckers, M., et al. (author)
  • Photometric study of the late-time near-infrared plateau in Type Ia supernovae 
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:3, s. 4414-4430
  • Journal article (peer-reviewed)abstract
    • We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe II] to [Fe III] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia. 
  •  
14.
  •  
15.
  •  
16.
  • Fitzgerald, Seán, et al. (author)
  • Large Artery Atherosclerotic Clots are Larger than Clots of other Stroke Etiologies and have Poorer Recanalization rates.
  • 2021
  • In: Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. - : Elsevier BV. - 1532-8511. ; 30:1
  • Journal article (peer-reviewed)abstract
    • There is a paucity of knowledge in the literature relating to the extent of clot burden and stroke etiology. In this study, we measured the Extracted Clot Area (ECA) retrieved during endovascular treatment (EVT) and investigated relationships with suspected etiology, administration of intravenous thrombolysis and recanalization.As part of the multi-institutional RESTORE registry, the ECA retrieved during mechanical thrombectomy was quantified using ImageJ. The effect of stroke etiology (Large-artery atherosclerosis (LAA), Cardioembolism, Cryptogenic and other) and recombinant tissue plasminogen activator (rtPA) on ECA and recanalization outcome (mTICI) was assessed. Successful recanalization was described as mTICI 2c-3.A total of 550 patients who underwent EVT with any clot retrieved were included in the study. The ECA was significantly larger in the LAA group compared to all other etiologies. The average ECA size of each etiology was; LAA=109mm2, Cardioembolic=52mm2, Cryptogenic=47mm2 and Other=52mm2 (p=0.014*). LAA patients also had a significantly poorer rate of successful recanalization (mTICI 2c-3) compared to all other etiologies (p=0.003*). The administration of tPA was associated with a smaller ECA in both LAA (p=0.007*) and cardioembolic (p=0.035*) groups.The ECA of LAA clots was double the size of all other etiologies and this is associated with a lower rate of successful recanalization in LAA stroke subtype. rtPA administration prior to thrombectomy was associated with reduced ECA in LAA and CE clots.
  •  
17.
  • Fitzgerald, Seán, et al. (author)
  • Per-pass analysis of acute ischemic stroke clots: impact of stroke etiology on extracted clot area and histological composition.
  • 2021
  • In: Journal of neurointerventional surgery. - : BMJ. - 1759-8486 .- 1759-8478. ; 13, s. 1111-1116
  • Journal article (peer-reviewed)abstract
    • Initial studies investigating correlations between stroke etiology and clot composition are conflicting and do not account for clot size as determined by area. Radiological studies have shown that cardioembolic strokes are associated with shorter clot lengths and lower clot burden than non-cardioembolic clots.To report the relationship between stroke etiology, extracted clot area, and histological composition at each procedural pass.As part of the multi-institutional RESTORE Registry, the Martius Scarlett Blue stained histological composition and extracted clot area of 612 per-pass clots retrieved from 441 patients during mechanical thrombectomy procedures were quantified. Correlations with clinical and procedural details were investigated.Clot composition varied significantly with procedural passes; clots retrieved in earlier passes had higher red blood cell content (H4=11.644, p=0.020) and larger extracted clot area (H4=10.730, p=0.030). Later passes were associated with significantly higher fibrin (H4=12.935, p=0.012) and platelets/other (H4=15.977, p=0.003) content and smaller extracted clot area. Large artery atherosclerotic (LAA) clots were significantly larger in the extracted clot area and more red blood cell-rich than other etiologies in passes 1-3. Cardioembolic and cryptogenic clots had similar histological composition and extracted clot area across all procedural passes.LAA clots are larger and associated with a large red blood cell-rich extracted clot area, suggesting soft thrombus material. Cardioembolic clots are smaller in the extracted clot area, consistent in composition and area across passes, and have higher fibrin and platelets/other content than LAA clots, making them stiffer clots. The per-pass histological composition and extracted clot area of cryptogenic clots are similar to those of cardioembolic clots, suggesting similar formation mechanisms.
  •  
18.
  •  
19.
  • Gkini, Anamaria, et al. (author)
  • SN2020zbf : A fast-rising hydrogen-poor superluminous supernova with strong carbon lines
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • SN 2020zbf is a hydrogen-poor superluminous supernova (SLSN) at z = 0.1947 that shows conspicuous C II features at early times, in contrast to the majority of H-poor SLSNe. Its peak magnitude is Mg = −21.2 mag and its rise time (≲26.4 days from first light) places SN 2020zbf among the fastest rising type I SLSNe. We used spectra taken from ultraviolet (UV) to near-infrared wavelengths to identify spectral features. We paid particular attention to the C II lines as they present distinctive characteristics when compared to other events. We also analyzed UV and optical photometric data and modeled the light curves considering three different powering mechanisms: radioactive decay of 56Ni, magnetar spin-down, and circumstellar medium (CSM) interaction. The spectra of SN 2020zbf match the model spectra of a C-rich low-mass magnetar-powered supernova model well. This is consistent with our light curve modeling, which supports a magnetar-powered event with an ejecta mass Mej = 1.5 M⊙. However, we cannot discard the CSM-interaction model as it may also reproduce the observed features. The interaction with H-poor, carbon-oxygen CSM near peak light could explain the presence of C II emission lines. A short plateau in the light curve around 35–45 days after peak, in combination with the presence of an emission line at 6580 Å, can also be interpreted as being due to a late interaction with an extended H-rich CSM. Both the magnetar and CSM-interaction models of SN 2020zbf indicate that the progenitor mass at the time of explosion is between 2 and 5 M⊙. Modeling the spectral energy distribution of the host galaxy reveals a host mass of 108.7 M⊙, a star formation rate of 0.24−0.12+0.41 M⊙ yr−1, and a metallicity of ∼0.4 Z⊙.
  •  
20.
  • Hudson, Thomas J., et al. (author)
  • International network of cancer genome projects
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7291, s. 993-998
  • Journal article (peer-reviewed)abstract
    • The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
  •  
21.
  • Jabrah, Duaa, et al. (author)
  • White blood cell subtypes and neutrophil extracellular traps content as biomarkers for stroke etiology in acute ischemic stroke clots retrieved by mechanical thrombectomy.
  • 2024
  • In: Thrombosis research. - 1879-2472. ; 234, s. 1-8
  • Journal article (peer-reviewed)abstract
    • Lymphocytes, macrophages, neutrophils, and neutrophil extracellular traps (NETs) associate with stroke risk factors and form a thrombus through different mechanisms. We investigated the total WBCs, WBC subtypes and NETs composition in acute ischemic stroke (AIS) clots to identify possible etiological differences that could help us further understand the process of thrombosis that leads to AIS.AIS clots from 100 cases each of atherothrombotic (AT), cardioembolic (CE) and cryptogenic stroke etiology were collected per-pass as part of the CÚRAM RESTORE registry of AIS clots. Martius Scarlet Blue stain was used to identify the main histological components of the clots. Immunohistochemical staining was used to identify neutrophils, lymphocytes, macrophages, and NETs patterns. The cellular and histological components were quantified using Orbit Image Analysis software.AT clots were larger, with more red blood cells and fewer WBCs than CE clots. AT clots had more lymphocytes and cryptogenic clots had fewer macrophages than other etiologies. Most significantly, CE clots showed higher expression of neutrophils and extracellular web-like NETs compared to AT and cryptogenic clots. There was also a significantly higher distribution of web-like NETs around the periphery of the CE clots while a mixed distribution was observed in AT clots.The difference in neutrophil and NETs expression in clots from different etiologies may provide insight into the mechanism of clot formation.
  •  
22.
  •  
23.
  • Klein, Alison P., et al. (author)
  • Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer
  • 2018
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 x 10(-8)). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PAN-DoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 x 10(-14)), rs2941471 at 8q21.11 (HNF4G, P = 6.60 x 10(-10)), rs4795218 at 17q12 (HNF1B, P = 1.32 x 10(-8)), and rs1517037 at 18q21.32 (GRP, P = 3.28 x 10(-8)). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view