SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brough R) "

Search: WFRF:(Brough R)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Dramburg, S, et al. (author)
  • EAACI Molecular Allergology User's Guide 2.0
  • 2023
  • In: Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology. - 1399-3038. ; 3434 Suppl 28, s. e13854-
  • Journal article (peer-reviewed)
  •  
3.
  • Matricardi, PM, et al. (author)
  • EAACI Molecular Allergology User's Guide
  • 2016
  • In: Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology. - : Wiley. - 1399-3038. ; 2727 Suppl 23, s. 1-250
  • Journal article (peer-reviewed)
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Bianco, Federica B., et al. (author)
  • Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time : A Pioneering Process of Community-focused Experimental Design
  • 2022
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 258:1
  • Journal article (peer-reviewed)abstract
    • Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey's massive data throughput will be transformational for many other astrophysics domains and Rubin's data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.
  •  
13.
  • Shepherd, Rosalie H., et al. (author)
  • Measurement of gas-phase OH radical oxidation and film thickness of organic films at the air-water interface using material extracted from urban, remote and wood smoke aerosol
  • 2022
  • In: Environmental Science. - : Royal Society of Chemistry (RSC). - 2634-3606. ; 2:4, s. 574-590
  • Journal article (peer-reviewed)abstract
    • The presence of an organic film on a cloud droplet or aqueous aerosol particle has the potential to alter the chemical, optical and physical properties of the droplet or particle. In the study presented, water insoluble organic materials extracted from urban, remote (Antarctica) and wood burning atmospheric aerosol were found to have stable, compressible, films at the air-water interface that were typically similar to 6-18 angstrom thick. These films are reactive towards gas-phase OH radicals and decay exponentially, with bimolecular rate constants for reaction with gas-phase OH radicals of typically 0.08-1.5 x 10(-10) cm(3) molecule(-1) s(-1). These bimolecular rate constants equate to initial OH radical uptake coefficients estimated to be similar to 0.6-1 except woodsmoke (similar to 0.05). The film thickness and the neutron scattering length density of the extracted atmosphere aerosol material (from urban, remote and wood burning) were measured by neutron reflection as they were exposed to OH radicals. For the first time neutron reflection has been demonstrated as an excellent technique for studying the thin films formed at air-water interfaces from materials extracted from atmospheric aerosol samples. Additionally, the kinetics of gas-phase OH radicals with a proxy compound, the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) was studied displaying significantly different behaviour, thus demonstrating it is not a good proxy for atmospheric materials that may form films at the air-water interface. The atmospheric lifetimes, with respect to OH radical oxidation, of the insoluble organic materials extracted from atmospheric aerosol at the air-water interface were a few hours. Relative to a possible physical atmospheric lifetime of 4 days, the oxidation of these films is important and needs inclusion in atmospheric models. The optical properties of these films were previously reported [Shepherd et al., Atmos. Chem. Phys., 2018, 18, 5235-5252] and there is a significant change in top of the atmosphere albedo for these thin films on core-shell atmospheric aerosol using the film thickness data and confirmation of stable film formation at the air-water interface presented here.
  •  
14.
  • Sousa-Pinto, Bernardo, et al. (author)
  • Development and validation of combined symptom-medication scores for allergic rhinitis*
  • 2022
  • In: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 77:7, s. 2147-2162
  • Journal article (peer-reviewed)abstract
    • Background: Validated combined symptom-medication scores (CSMSs) are needed to investigate the effects of allergic rhinitis treatments. This study aimed to use real-life data from the MASK-air® app to generate and validate hypothesis- and data-driven CSMSs.Methods: We used MASK-air® data to assess the concurrent validity, test-retest reliability and responsiveness of one hypothesis-driven CSMS (modified CSMS: mCSMS), one mixed hypothesis- and data-driven score (mixed score), and several data-driven CSMSs. The latter were generated with MASK-air® data following cluster analysis and regression models or factor analysis. These CSMSs were compared with scales measuring (i) the impact of rhinitis on work productivity (visual analogue scale [VAS] of work of MASK-air®, and Work Productivity and Activity Impairment: Allergy Specific [WPAI-AS]), (ii) quality-of-life (EQ-5D VAS) and (iii) control of allergic diseases (Control of Allergic Rhinitis and Asthma Test [CARAT]).Results: We assessed 317,176 days of MASK-air® use from 17,780 users aged 16-90 years, in 25 countries. The mCSMS and the factor analyses-based CSMSs displayed poorer validity and responsiveness compared to the remaining CSMSs. The latter displayed moderate-to-strong correlations with the tested comparators, high test-retest reliability and moderate-to-large responsiveness. Among data-driven CSMSs, a better performance was observed for cluster analyses-based CSMSs. High accuracy (capacity of discriminating different levels of rhinitis control) was observed for the latter (AUC-ROC = 0.904) and for the mixed CSMS (AUC-ROC = 0.820).Conclusion: The mixed CSMS and the cluster-based CSMSs presented medium-high validity, reliability and accuracy, rendering them as candidates for primary endpoints in future rhinitis trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view