SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carmody M) "

Search: WFRF:(Carmody M)

  • Result 1-25 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  • Conley, R. B., et al. (author)
  • Secondary Fracture Prevention: Consensus Clinical Recommendations from a Multistakeholder Coalition
  • 2020
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 35:1, s. 36-52
  • Journal article (peer-reviewed)abstract
    • Osteoporosis-related fractures are undertreated, due in part to misinformation about recommended approaches to patient care and discrepancies among treatment guidelines. To help bridge this gap and improve patient outcomes, the American Society for Bone and Mineral Research assembled a multistakeholder coalition to develop clinical recommendations for the optimal prevention of secondary fracture among people aged 65 years and older with a hip or vertebral fracture. The coalition developed 13 recommendations (7 primary and 6 secondary) strongly supported by the empirical literature. The coalition recommends increased communication with patients regarding fracture risk, mortality and morbidity outcomes, and fracture risk reduction. Risk assessment (including fall history) should occur at regular intervals with referral to physical and/or occupational therapy as appropriate. Oral, intravenous, and subcutaneous pharmacotherapies are efficacious and can reduce risk of future fracture. Patients need education, however, about the benefits and risks of both treatment and not receiving treatment. Oral bisphosphonates alendronate and risedronate are first-line options and are generally well tolerated; otherwise, intravenous zoledronic acid and subcutaneous denosumab can be considered. Anabolic agents are expensive but may be beneficial for selected patients at high risk. Optimal duration of pharmacotherapy is unknown but because the risk for second fractures is highest in the early post-fracture period, prompt treatment is recommended. Adequate dietary or supplemental vitamin D and calcium intake should be assured. Individuals being treated for osteoporosis should be reevaluated for fracture risk routinely, including via patient education about osteoporosis and fractures and monitoring for adverse treatment effects. Patients should be strongly encouraged to avoid tobacco, consume alcohol in moderation at most, and engage in regular exercise and fall prevention strategies. Finally, referral to endocrinologists or other osteoporosis specialists may be warranted for individuals who experience repeated fracture or bone loss and those with complicating comorbidities (eg, hyperparathyroidism, chronic kidney disease). (c) 2019 American Society for Bone and Mineral Research.
  •  
6.
  • Ebrahimi-Fakhari, Darius, et al. (author)
  • Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia
  • 2020
  • In: Brain. - OXFORD ENGLAND : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:10, s. 2929-2944
  • Journal article (peer-reviewed)abstract
    • Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 +/- 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 +/- 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 +/- 5.1 years, SD) and later tetraplegia (mean age: 16.1 +/- 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 +/- 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 +/- 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.
  •  
7.
  •  
8.
  • Warden, Diane, et al. (author)
  • Anticipated Benefits of Care (ABC) : psychometrics and predictive value in psychiatric disorders
  • 2010
  • In: Psychological Medicine. - 0033-2917 .- 1469-8978. ; 40:6, s. 955-965
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Attitudes and expectations about treatment have been associated with symptomatic outcomes, adherence and utilization in patients with psychiatric disorders. No measure of patients' anticipated benefits of treatment on domains of everyday functioning has previously been available.MethodThe Anticipated Benefits of Care (ABC) is a new, 10-item questionnaire used to measure patient expectations about the impact of treatment on domains of everyday functioning. The ABC was collected at baseline in adult out-patients with major depressive disorder (MDD) (n=528), bipolar disorder (n=395) and schizophrenia (n=447) in the Texas Medication Algorithm Project (TMAP). Psychometric properties of the ABC were assessed, and the association of ABC scores with treatment response at 3 months was evaluated. RESULTS: Evaluation of the ABC's internal consistency yielded Cronbach's alpha of 0.90-0.92 for patients across disorders. Factor analysis showed that the ABC was unidimensional for all patients and for patients with each disorder. For patients with MDD, lower anticipated benefits of treatment was associated with less symptom improvement and lower odds of treatment response [odds ratio (OR) 0.72, 95% confidence interval (CI) 0.57-0.87, p=0.0011]. There was no association between ABC and symptom improvement or treatment response for patients with bipolar disorder or schizophrenia, possibly because these patients had modest benefits with treatment. CONCLUSIONS: The ABC is the first self-report that measures patient expectations about the benefits of treatment on everyday functioning, filling an important gap in available assessments of attitudes and expectations about treatment. The ABC is simple, easy to use, and has acceptable psychometric properties for use in research or clinical settings.
  •  
9.
  • Wilson, Rachel M., et al. (author)
  • Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland
  • 2022
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 820
  • Journal article (peer-reviewed)abstract
    • Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.
  •  
10.
  • Woodcroft, Ben J., et al. (author)
  • Genome-centric view of carbon processing in thawing permafrost
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 560:7716, s. 49-
  • Journal article (peer-reviewed)abstract
    • As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.
  •  
11.
  • Conley, Robert B., et al. (author)
  • Secondary Fracture Prevention : Consensus Clinical Recommendations from a Multistakeholder Coalition
  • 2020
  • In: Journal of Orthopaedic Trauma. - 0890-5339. ; 34:4, s. 125-141
  • Journal article (peer-reviewed)abstract
    • Osteoporosis-related fractures are undertreated, due in part to misinformation about recommended approaches to patient care and discrepancies among treatment guidelines. To help bridge this gap and improve patient outcomes, the American Society for Bone and Mineral Research assembled a multistakeholder coalition to develop clinical recommendations for the optimal prevention of secondary fractureamong people aged 65 years and older with a hip or vertebral fracture. The coalition developed 13 recommendations (7 primary and 6 secondary) strongly supported by the empirical literature. The coalition recommends increased communication with patients regarding fracture risk, mortality and morbidity outcomes, and fracture risk reduction. Risk assessment (including fall history) should occur at regular intervals with referral to physical and/or occupational therapy as appropriate. Oral, intravenous, andsubcutaneous pharmacotherapies are efficaciousandcanreduce risk of future fracture.Patientsneededucation,however, about thebenefitsandrisks of both treatment and not receiving treatment. Oral bisphosphonates alendronate and risedronate are first-line options and are generally well tolerated; otherwise, intravenous zoledronic acid and subcutaneous denosumab can be considered. Anabolic agents are expensive butmay be beneficial for selected patients at high risk.Optimal duration of pharmacotherapy is unknown but because the risk for second fractures is highest in the earlypost-fractureperiod,prompt treatment is recommended.Adequate dietary or supplemental vitaminDand calciumintake shouldbe assured. Individuals beingtreatedfor osteoporosis shouldbe reevaluated for fracture risk routinely, includingvia patienteducationabout osteoporosisandfracturesandmonitoringfor adverse treatment effects.Patients shouldbestronglyencouraged to avoid tobacco, consume alcohol inmoderation atmost, and engage in regular exercise and fall prevention strategies. Finally, referral to endocrinologists or other osteoporosis specialists may be warranted for individuals who experience repeated fracture or bone loss and those with complicating comorbidities (eg, hyperparathyroidism, chronic kidney disease).
  •  
12.
  • Conley, Robert B., et al. (author)
  • Secondary Fracture Prevention : Consensus Clinical Recommendations from a Multistakeholder Coalition
  • 2020
  • In: Orthopaedic Nursing. - 0744-6020. ; 39:3, s. 145-161
  • Journal article (peer-reviewed)abstract
    • Osteoporosis-related fractures are undertreated, due in part to misinformation about recommended approaches to patient care and discrepancies among treatment guidelines. To help bridge this gap and improve patient outcomes, the American Society for Bone and Mineral Research assembled a multistakeholder coalition to develop clinical recommendations for the optimal prevention of secondary fracture among people aged 65 years and older with a hip or vertebral fracture. The coalition developed 13 recommendations (7 primary and 6 secondary) strongly supported by the empirical literature. The coalition recommends increased communication with patients regarding fracture risk, mortality and morbidity outcomes, and fracture risk reduction. Risk assessment (including fall history) should occur at regular intervals with referral to physical and/or occupational therapy as appropriate. Oral, intravenous, and subcutaneous pharmacotherapies are efficacious and can reduce risk offuture fracture. Patients need education, however, about the benefits and risks of both treatment and not receiving treatment. Oral bisphosphonates alendronate and risedronate are first-line options and are generally well tolerated; otherwise, intravenous zoledronic acid and subcutaneous denosumab can be considered. Anabolic agents are expensive but may be beneficial for selected patients at high risk. Optimal duration of pharmacotherapy is unknown but because the riskfor second fractures is highest in the early post-fracture period, prompt treatment is recommended. Adequate dietary or supplemental vitamin D and calcium intake should be assured. Individuals being treated for osteoporosis should be reevaluated for fracture risk routinely, including via patient education about osteoporosis and fractures and monitoring foradverse treatment effects. Patients should be strongly encouraged to avoid tobacco, consume alcohol in moderation at most, and engage in regular exercise and fall prevention strategies. Finally, referral to endocrinologists or other osteoporosis specialists may be warranted for individuals who experience repeated fracture or bone loss and those with complicating comorbidities (eg, hyperparathyroidism, chronic kidney disease). (c) 2019 American Society for Bone and Mineral Research.
  •  
13.
  • Ellenbogen, Jared B., et al. (author)
  • Methylotrophy in the Mire : direct and indirect routes for methane production in thawing permafrost
  • 2024
  • In: mSystems. - 2379-5077. ; 9:1
  • Journal article (peer-reviewed)abstract
    • While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site’s methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.
  •  
14.
  • Fisher, Rebecca E., et al. (author)
  • Measurement of the C-13 isotopic signature of methane emissions from northern European wetlands
  • 2017
  • In: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 31:3, s. 605-623
  • Journal article (peer-reviewed)abstract
    • Isotopic data provide powerful constraints on regional and global methane emissions and their source profiles. However, inverse modeling of spatially resolved methane flux is currently constrained by a lack of information on the variability of source isotopic signatures. In this study, isotopic signatures of emissions in the Fennoscandian Arctic have been determined in chambers over wetland, in the air 0.3 to 3m above the wetland surface and by aircraft sampling from 100m above wetlands up to the stratosphere. Overall, the methane flux to atmosphere has a coherent delta C-13 isotopic signature of -71 +/- 1%, measured in situ on the ground in wetlands. This is in close agreement with delta C-13 isotopic signatures of local and regional methane increments measured by aircraft campaigns flying through air masses containing elevated methane mole fractions. In contrast, results from wetlands in Canadian boreal forest farther south gave isotopic signatures of -67 +/- 1%. Wetland emissions dominate the local methane source measured over the European Arctic in summer. Chamber measurements demonstrate a highly variable methane flux and isotopic signature, but the results from air sampling within wetland areas show that emissions mix rapidly immediately above the wetland surface and methane emissions reaching the wider atmosphere do indeed have strongly coherent C isotope signatures. The study suggests that for boreal wetlands (>60 degrees N) global and regional modeling can use an isotopic signature of -71 parts per thousand to apportion sources more accurately, but there is much need for further measurements over other wetlands regions to verify this.
  •  
15.
  • Fofana, Aminata, et al. (author)
  • Mapping substrate use across a permafrost thaw gradient
  • 2022
  • In: Soil Biology and Biochemistry. - : Elsevier Ltd. - 0038-0717 .- 1879-3428. ; 175
  • Journal article (peer-reviewed)abstract
    • Permafrost thaw in northern peatlands is likely to create a positive feedback to climate change, as microbes transform soil carbon (C) into carbon dioxide (CO2) or methane (CH4). While the microbiome's encoded C-processing potential changes with thaw, the impact on substrate utilization and gas emissions is less well characterized. We therefore examined microbial C-cycling dynamics from a partially thawed Sphagnum-dominated bog to a fully thawed sedge-dominated fen in Stordalen Mire (68.35°N, 19.05°E), Sweden. We profiled C substrate utilization diversity and extent by Biolog Ecoplates™, then tested substrate-specific hypotheses by targeted additions (of glucose, the short chain fatty acids (SCFAs) acetate and butyrate, and the organic acids galacturonic acid and p-hydroxybenzoic acid, all at field-relevant concentrations) under anaerobic conditions at 15 °C. In parallel we characterized microbiomes (via 16S rRNA amplicon sequencing and quantitative polymerase chain reaction) and C gas emissions. The fen exhibited a higher substrate use diversity and faster rate of overall substrate utilization than in the bog, based on Biolog Ecoplate™ incubations. Simple glucose additions (akin to a positive control) to peat microcosms fueled fermentation as expected (reflected in enriched fermenter lineages, their inferred metabolisms, and CO2 production), but also showed potential priming of anaerobic phenol degradation in the bog. Addition of SCFAs to bog and fen produced the least change in lineages and in CO2, and modest suppression of CH4 primarily in the fen, attributed to inhibition. Addition of both organic acids greatly increased the CO2:CH4 ratio in the deep peats but had distinct individual gas dynamics and impacts on microbiota. Both organic acids appeared to act as both C source and as a microbial inhibitor, with galacturonic acid also likely playing a role in electron transfer or acceptance. Collectively, these results support the importance of aboveground-belowground linkages - and in particular the role of Sphagnum spp.- in supplying substrates and inhibitors that drive microbiome assembly and C processing in these dynamically changing systems. In addition, they highlight an important temporal dynamic: responses on the short time scale of incubations (which would reflect transition conditions in the field) differ from those evident at the longer scales of habitat transition, in ways consequential to C gas emissions. In the short term, substrate addition response reflected microbiome legacy (e.g., bog communities were slower to process C and better tolerated inhibitors than fen communities) but led to little overall increase in C gas production (and a high skew to CO2). At the longer time scale of bog and fen thaw stages (which are used to represent these systems in models) the concomitant shifts in plants, hydrology and microbiota attenuate microbiome legacy impacts on substrate processing and C gas emissions over time. As habitat transition areas expand under accelerating change, we hypothesize an increased role of microbiome legacy in the landscape overall, leading to a lag in the increase of CH4 emissions expected from fen expansion.
  •  
16.
  • Hodgkins, Suzanne B., et al. (author)
  • Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production
  • 2014
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:16, s. 5819-5824
  • Journal article (peer-reviewed)abstract
    • Carbon release due to permafrost thaw represents a potentially major positive climate change feedback. The magnitude of carbon loss and the proportion lost as methane (CH4) vs. carbon dioxide (CO2) depend on factors including temperature, mobilization of previously frozen carbon, hydrology, and changes in organic matter chemistry associated with environmental responses to thaw. While the first three of these effects are relatively well understood, the effect of organic matter chemistry remains largely un-studied. To address this gap, we examined the biogeochemistry of peat and dissolved organic matter (DOM) along a similar to 40-y permafrost thaw progression from recently- to fully thawed sites in Stordalen Mire (68.35 degrees N, 19.05 degrees E), a thawing peat plateau in northern Sweden. Thaw-induced subsidence and the resulting inundation along this progression led to succession in vegetation types accompanied by an evolution in organic matter chemistry. Peat C/N ratios decreased whereas humification rates increased, and DOM shifted toward lower molecular weight compounds with lower aromaticity, lower organic oxygen content, and more abundant microbially produced compounds. Corresponding changes in decomposition along this gradient included increasing CH4 and CO2 production potentials, higher relative CH4/CO2 ratios, and a shift in CH4 production pathway from CO2 reduction to acetate cleavage. These results imply that subsidence and thermokarst-associated increases in organic matter lability cause shifts in biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH4. This impact of permafrost thaw on organic matter chemistry could intensify the predicted climate feedbacks of increasing temperatures, permafrost carbon mobilization, and hydrologic changes.
  •  
17.
  • Hodgkins, Suzanne B., et al. (author)
  • Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland
  • 2016
  • In: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 187, s. 123-140
  • Journal article (peer-reviewed)abstract
    • The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered from various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnum-dominated bogs transition to more waterlogged rich fens that contain very little to no living Sphagnum. Release of this inhibition allows for higher levels of microbial activity and potentially greater CH4 release, as has been observed in these fen sites.
  •  
18.
  • O'Neill, C, et al. (author)
  • Dysfunctional intracellular calcium homoeostasis: a central cause of neurodegeneration in Alzheimer's disease
  • 2001
  • In: Biochemical Society symposium. - : Portland Press Ltd.. - 0067-8694 .- 1744-1439. ; 67:67, s. 177-194
  • Journal article (peer-reviewed)abstract
    • The clinical symptoms of all forms of Alzheimer's disease (AD) result from a slowly progressive neurodegeneration that is associated with the excessive deposition of ϐ-amyloid (Aϐ) in plaques and in the cerebrovasculature, and the formation of intraneuronal neurofibrillary tangles, which are composed primarily of abnormally hyperphosphorylated tau protein. The sequence of cellular events that cause this pathology and neurodegeneration is unknown. It is, however, most probably linked to neuronal signal transduction systems that become misregulated in the brains of certain individuals, causing excessive Aϐ to be formed and/or deposited, tau to become aggregated and hyperphosphorylated and neurons to degenerate. We hypothesize that a progressive alteration in the ability of neurons to regulate intracellular calcium, particularly at the level of the endoplasmic reticulum, is a crucial signal transduction event that is linked strongly to the initiation and development of AD pathology. In this chapter we will discuss the key findings that lend support to this hypothesis.
  •  
19.
  • Singleton, Caitlin M., et al. (author)
  • Methanotrophy across a natural permafrost thaw environment
  • 2018
  • In: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12:10, s. 2544-2558
  • Journal article (peer-reviewed)abstract
    • The fate of carbon sequestered in permafrost is a key concern for future global warming as this large carbon stock is rapidly becoming a net methane source due to widespread thaw. Methane release from permafrost is moderated by methanotrophs, which oxidise 20-60% of this methane before emission to the atmosphere. Despite the importance of methanotrophs to carbon cycling, these microorganisms are under-characterised and have not been studied across a natural permafrost thaw gradient. Here, we examine methanotroph communities from the active layer of a permafrost thaw gradient in Stordalen Mire (Abisko, Sweden) spanning three years, analysing 188 metagenomes and 24 metatranscriptomes paired with in situ biogeochemical data. Methanotroph community composition and activity varied significantly as thaw progressed from intact permafrost palsa, to partially thawed bog and fully thawed fen. Thirteen methanotroph population genomes were recovered, including two novel genomes belonging to the uncultivated upland soil cluster alpha (USCa) group and a novel potentially methanotrophic Hyphomicrobiaceae. Combined analysis of porewater delta C-13-CH 4 isotopes and methanotroph abundances showed methane oxidation was greatest below the oxic-anoxic interface in the bog. These results detail the direct effect of thaw on autochthonous methanotroph communities, and their consequent changes in population structure, activity and methane moderation potential.
  •  
20.
  • Varner, Ruth K., et al. (author)
  • Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014
  • 2022
  • In: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 380:2215
  • Journal article (peer-reviewed)abstract
    • Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales.This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.
  •  
21.
  • Carmody, C., et al. (author)
  • Structural, electrical, and optical analysis of ion implanted semi-insulating InP
  • 2004
  • In: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 95:2, s. 477-482
  • Journal article (peer-reviewed)abstract
    • Semi-insulating InP was implanted with MeV P, As, Ga, and In ions, and the resulting evolution of structural properties with increased annealing temperature was analyzed using double crystal x-ray diffractometry and cross sectional transmission electron microscopy. The types of damage identified are correlated with scanning spreading resistance and scanning capacitance measurements, as well as with previously measured Hall effect and time resolved photoluminescence results. We have identified multiple layers of conductivity in the samples which occur due to the nonuniform damage profile of a single implant. Our structural studies have shown that the amount and type of damage caused by implantation does not scale with implant ion atomic mass.
  •  
22.
  • Chang, Kuang-Yu, et al. (author)
  • Methane Production Pathway Regulated Proximally by Substrate Availability and Distally by Temperature in a High-Latitude Mire Complex
  • 2019
  • In: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 124:10, s. 3057-3074
  • Journal article (peer-reviewed)abstract
    • Projected 21st century changes in high-latitude climate are expected to have significant impacts on permafrost thaw, which could cause substantial increases in emissions to the atmosphere of carbon dioxide (CO2) and methane (CH4, which has a global warming potential 28 times larger than CO2 over a 100-year horizon). However, predicted CH4 emission rates are very uncertain due to difficulties in modeling complex interactions among hydrological, thermal, biogeochemical, and plant processes. Methanogenic production pathways (i.e., acetoclastic [AM] and hydrogenotrophic [HM]) and the magnitude of CH4 emissions may both change as permafrost thaws, but a mechanistic analysis of controls on such shifts in CH4 dynamics is lacking. In this study, we reproduced observed shifts in CH4 emissions and production pathways with a comprehensive biogeochemical model (ecosys) at the Stordalen Mire in subarctic Sweden. Our results demonstrate that soil temperature changes differently affect AM and HM substrate availability, which regulates magnitudes of AM, HM, and thereby net CH4 emissions. We predict very large landscape-scale, vertical, and temporal variations in the modeled HM fraction, highlighting that measurement strategies for metrics that compare CH4 production pathways could benefit from model informed scale of temporal and spatial variance. Finally, our findings suggest that the warming and wetting trends projected in northern peatlands could enhance peatland AM fraction and CH4 emissions even without further permafrost degradation.
  •  
23.
  • Hodgkins, Suzanne B., et al. (author)
  • Soil incubations reproduce field methane dynamics in a subarctic wetland
  • 2015
  • In: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 126:1-2, s. 241-249
  • Journal article (peer-reviewed)abstract
    • A major challenge in peatland carbon cycle modeling is the estimation of subsurface methane (CH4) and carbon dioxide (CO2) production and consumption rates and pathways. The most common methods for modeling these processes are soil incubations and stable isotope modeling, both of which may involve departures from field conditions. To explore the impacts of these departures, we measured CH4/CO2 concentration ratios and C-13 fractionation factors (alpha(C), indicating CH4 production pathways) in field pore water from a thawing subarctic peatland, and compared these values to those observed in incubations of corresponding peat samples. Incubation CH4/CO2 production ratios were significantly and positively correlated with observed field CH4/CO2 concentration ratios, though observed field ratios were similar to 20 % of those in incubations due to CH4's lower solubility in pore water. After correcting the field ratios for CH4 loss with an isotope mass balance model, the incubation CH4/CO2 ratios and alpha(C) were both significantly positively correlated with field ratios and alpha(C) (respectively), both with slopes indistinguishable from 1. Although CH4/CO2 ratios and alpha(C) were slightly higher in the incubations, these shifts were consistent along the thaw progression, indicating that ex situ incubations can replicate trends in in situ CH4 production.
  •  
24.
  • McCalley, Carmody, et al. (author)
  • Methane dynamics regulated by microbial community response to permafrost thaw
  • 2014
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 514:7523, s. 478-481
  • Journal article (peer-reviewed)abstract
    • Permafrost contains about 50% of the global soil carbon1. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions2, 3. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown3 and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ13C signature (10–15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden4, 5 as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus ‘Methanoflorens stordalenmirensis’6 is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models3, 7. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.
  •  
25.
  • Mondav, Rhiannon, 1972-, et al. (author)
  • Discovery of a novel methanogen prevalent in thawing permafrost
  • 2014
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Journal article (peer-reviewed)abstract
    • Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane, creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype, Candidatus ‘Methanoflorens stordalenmirensis’ gen. nov. sp. nov., belonging to the uncultivated lineage ‘Rice Cluster II’ (Candidatus ‘Methanoflorentaceae’ fam. nov.). Metagenomic sequencing led to the recovery of its near-complete genome, revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands, ‘Methanoflorentaceae’ are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost, Candidatus ‘M. stordalenmirensis’ appears to be a key mediator of methane-based positive feedback to climate warming.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view