SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cempírek Jan) "

Search: WFRF:(Cempírek Jan)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bosi, Ferdinando, et al. (author)
  • Princivalleite, Na(Mn2Al)Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup from Veddasca Valley, Varese, Italy
  • 2022
  • In: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 86:1, s. 78-86
  • Journal article (peer-reviewed)abstract
    • Princivalleite, Na(Mn2Al)Al6(Si6O18)(BO3)3(OH)3O, is a new mineral (IMA2020-056) of the tourmaline supergroup. It occurs in the Veddasca Valley, Luino area, Varese, Lombardy, Italy (46°03’30.74’’N, 8°48’24.47’’E) at the centre of a narrow (2–3 cm wide) vertical pegmatitic vein, a few metres long, crosscutting a lens of flaser gneiss. Crystals are subhedral (up to 10 mm in size), azure with a vitreous lustre, conchoidal fracture and white streak. Princivalleite has a Mohs hardness of ~7, a calculated density of 3.168 g/cm3 and is uniaxial (–). Princivalleite has trigonal symmetry, space group R3m, a = 15.9155(2) Å, c = 7.11660(10) Å, V = 1561.15(4) Å3 and Z = 3. The crystal structure was refined to R1 = 1.36% using 1758 unique reflections collected with MoKα X-ray intensity data. Crystal-chemical analysis resulted in the empirical crystal-chemical formulaX(Na0.54Ca0.11□0.35)Σ1.00Y(Al1.82Mn2+0.84Fe2+0.19Zn0.07Li0.08)Σ3.00Z(Al5.85Fe2+0.13Mg0.02)Σ6.00[T(Si5.60Al0.40)Σ6.00O18](BO3)3O(3)[(OH)2.71O0.29]Σ3.00O(1)[O0.66F0.22(OH)0.12]Σ1.00 which recast in its ordered form for classification purposes is:X(Na0.54Ca0.11□0.35)Σ1.00Y(Al1.67Mn2+0.84Fe2+0.32Zn0.07Mg0.02Li0.08)Σ3.00ZAl6.00[T(Si5.60Al0.40)Σ6.00O18](BO3)3V[(OH)2.71O0.29]Σ3.00W[O0.66F0.22(OH)0.12]Σ1.00.Princivalleite is an oxy-species belonging to the alkali group of the tourmaline supergroup. The closest end-member compositions of valid tourmaline species are those of oxy-schorl and darrellhenryite, to which princivalleite is related by the substitutions Mn2+ ↔ Fe2+ and Mn2+ ↔ 0.5Al3+ + 0.5Li+, respectively. Princivalleite from Veddasca Valley is a geochemical anomaly, originated in a B-rich and peraluminous anatectic pegmatitic melt formed in situ, poor in Fe and characterised by reducing conditions in the late-stage metamorphic fluids derived by the flaser gneiss. The Mn-enrichment in this new tourmaline is due to absence of other minerals competing for Mn such as garnet.
  •  
2.
  • Scribner, Emily D., et al. (author)
  • Magnesio-lucchesiite, CaMg3Al6(Si6O18)(BO3)3(OH)3O, a new species of the tourmaline supergroup
  • 2021
  • In: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 106:6, s. 862-871
  • Journal article (peer-reviewed)abstract
    • Magnesio-lucchesiite, ideally CaMg3Al6(Si6O18)(BO3)3(OH)3O, is a new mineral species of the tourmaline supergroup. The holotype material was discovered within a lamprophyre dike that cross-cuts tourmaline-rich metapelites within the exocontact of the O’Grady Batholith, Northwest Territories (Canada). Two additional samples were found at San Piero in Campo, Elba Island, Tuscany (Italy) in hydrothermal veins embedded in meta-serpentinites within the contact aureole of the Monte Capanne intrusion. The studied crystals of magnesio-lucchesiite are black in a hand sample with vitreous luster, conchoidal fracture, an estimated hardness of 7–8, and a calculated density of 3.168 (Canada) and 3.175 g/cm3 (Italy). In plane-polarized light, magnesio-lucchesiite is pleochroic (O = dark brown, E = colorless) and uniaxial (–); its refractive index values are nω = 1.668(3) and nε = 1.644(3) (Canada), and nω = 1.665(5) and nε = 1.645(5) (Italy). Magnesio-lucchesiite is trigonal, space group R3m, Z = 3, with a = 15.9910(3) Å, c = 7.2224(2) Å, V = 1599.42(7) Å3 (Canada) and with a = 15.9270(10) Å, c = 7.1270(5) Å, V = 1565.7(2) Å3 (Italy, sample 1). The crystal structure of magnesio-lucchesiite was refined to R1 = 3.06% using 2953 reflections with Fo > 4σ(Fo) (Canadian sample; 1.96% / 1225 for the Italian sample) The Canadian (holotype) sample has the ordered empirical formula X(Ca0.60Na0.39K0.01)Σ1.00Y(Mg2.02Fe2+0.62Fe3+0.09Ti0.25V0.01Cr0.01)Σ3.00Z(Al5.31Fe3+0.69)Σ6.00[T(Si5.98Al0.02)Σ6.00O18(BO3)3V[(OH)2.59O0.41]Σ3.00W(O0.78F0.22)Σ1.00. The Italian (co-type) material shows a wider chemical variability, with two different samples from the same locality having ordered chemical formulas: X(Ca0.88Na0.12)Σ1.00Y(Mg1.45Fe2+0.40Al0.79Fe3+0.36)Σ3.00ZAl6[T(Si5.05Al0.95)Σ6.00O18](BO3)3V[(OH)2.90O0.10]Σ3.00W(O0.98F0.02)Σ1.00(sample 1) and X(Ca0.71Na0.21o0.08)Σ1.00Y(Mg2.49Fe2+0.41Ti0.10)Σ3.00Z(Al5.44Fe3+0.46Mg0.09V0.01)Σ6.00[T(Si5.87Al0.13)Σ6.00O18](BO3)3V(OH)3W[O0.61(OH)0.39]Σ1.00 (sample 2). Magnesio-lucchesiite is an oxy-species belonging to the calcic group of the tourmaline supergroup. It is related to lucchesiite by the homovalent substitution YFe ↔ YMg, and to feruvite by the homovalent and heterovalent substitutions YFe ↔ YMg and ZAl3+ + WO2– ↔ ZMg2+ + W(OH)1–. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA 2019-025). Occurrences of magnesio-lucchesiite show that its presence is not restricted to replacement of mafic minerals only; it may also form in metacarbonate rocks by fluctuations of F and Al during crystallization of common uvitic tourmaline. High miscibility with other tourmaline end-members indicates the large petrogenetic potential of magnesio-lucchesiite in Mg,Al-rich calc-silicate rocks, as well as contact-metamorphic and metasomatic rocks.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view