SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chaplin W.) "

Search: WFRF:(Chaplin W.)

  • Result 1-25 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abdo, A. A., et al. (author)
  • A limit on the variation of the speed of light arising from quantum gravity effects
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 462:7271, s. 331-334
  • Journal article (peer-reviewed)abstract
    • A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, lPlanck~1.62×10-33cm or EPlanck = MPlanckc2~1.22×1019GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. Here we report the detection of emission up to ~31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2EPlanck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of lPlanck/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
  •  
2.
  • Abdo, A. A., et al. (author)
  • Fermi Observations of High-energy Gamma-ray Emission from GRB 080825C
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 707:1, s. 580-592
  • Journal article (peer-reviewed)abstract
    • The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.
  •  
3.
  • Ackermann, M., et al. (author)
  • DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 729:2, s. 114-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.
  •  
4.
  • Ackermann, M., et al. (author)
  • Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 42-47
  • Journal article (peer-reviewed)abstract
    • The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
  •  
5.
  • Rauer, H., et al. (author)
  • The PLATO 2.0 mission
  • 2014
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Journal article (peer-reviewed)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
6.
  • Miglio, A., et al. (author)
  • PLATO as it is : A legacy mission for Galactic archaeology
  • 2017
  • In: Astronomical Notes - Astronomische Nachrichten. - : WILEY-V C H VERLAG GMBH. - 0004-6337 .- 1521-3994. ; 338:6, s. 644-661
  • Journal article (peer-reviewed)abstract
    • Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but it will only enable a blurred view on the temporal sequence that led to the present-day Galaxy. As demonstrated by the (ongoing) exploitation of data from the pioneering photometric missions CoRoT, Kepler, and K2, asteroseismology provides the way forward: solar-like oscillating giants are excellent evolutionary clocks thanks to the availability of seismic constraints on their mass and to the tight age-initial mass relation they adhere to. In this paper we identify five key outstanding questions relating to the formation and evolution of the Milky Way that will need precise and accurate ages for large samples of stars to be addressed, and we identify the requirements in terms of number of targets and the precision on the stellar properties that are needed to tackle such questions. By quantifying the asteroseismic yields expected from PLATO for red giant stars, we demonstrate that these requirements are within the capabilities of the current instrument design, provided that observations are sufficiently long to identify the evolutionary state and allow robust and precise determination of acoustic-mode frequencies. This will allow us to harvest data of sufficient quality to reach a 10% precision in age. This is a fundamental prerequisite to then reach the more ambitious goal of a similar level of accuracy, which will be possible only if we have at hand a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics, a goal that conveniently falls within the main aims of PLATO's core science. We therefore strongly endorse PLATO's current design and proposed observational strategy, and conclude that PLATO, as it is, will be a legacy mission for Galactic archaeology.
  •  
7.
  • Preece, R., et al. (author)
  • The First Pulse of the Extremely Bright GRB 130427A : A Test Lab for Synchrotron Shocks
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 51-54
  • Journal article (peer-reviewed)abstract
    • Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.
  •  
8.
  • Kim, HyeJin, et al. (author)
  • Towards a better future for biodiversity and people : Modelling Nature Futures
  • 2023
  • In: Global Environmental Change. - 0959-3780 .- 1872-9495. ; 82
  • Journal article (peer-reviewed)abstract
    • The Nature Futures Framework (NFF) is a heuristic tool for co-creating positive futures for nature and people. It seeks to open up a diversity of futures through mainly three value perspectives on nature - Nature for Nature, Nature for Society, and Nature as Culture. This paper describes how the NFF can be applied in modelling to support decision-making. First, we describe key considerations for the NFF in developing qualitative and quantitative scenarios: i) multiple value perspectives on nature as a state space where pathways improving nature toward a frontier can be represented, ii) mutually reinforcing key feedbacks of social-ecological systems that are important for nature conservation and human wellbeing, iii) indicators of multiple knowledge systems describing the evolution of complex social-ecological dynamics. We then present three approaches to modelling Nature Futures scenarios in the review, screening, and design phases of policy processes. This paper seeks to facilitate the integration of relational values of nature in models and strengthen modelled linkages across biodiversity, nature's contributions to people, and quality of life.
  •  
9.
  • Lichtenberg, Elinor M., et al. (author)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Journal article (peer-reviewed)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
10.
  • Valentini, M, et al. (author)
  • RAVE stars in K2 : I. Improving RAVE red giants spectroscopy using asteroseismology from K2 Campaign 1
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Journal article (peer-reviewed)abstract
    • We present a set of 87 RAVE stars with detected solar like oscillations, observed during Campaign 1 of the K2 mission (RAVE K2-C1 sample). This data set provides a useful benchmark for testing the gravities provided in RAVE data release 4 (DR4), and is key for the calibration of the RAVE data release 5 (DR5). The RAVE survey collected medium-resolution spectra (R = 7500) centred in the Ca II triplet(8600 Å) wavelength interval, which although being very useful for determining radial velocity and metallicity, even at low S/N, is known be affected by a log (g)-Teff degeneracy. This degeneracy is the cause of the large spread in the RAVE DR4 gravities for giants. The understanding of the trends and offsets that affects RAVE atmospheric parameters, and in particular log (g), is a crucial step in obtaining not only improved abundance measurements, but also improved distances and ages. In the present work, we use two different pipelines, GAUFRE and Sp-Ace, to determine atmospheric parameters and abundances by fixing log (g) to the seismic one. Our strategy ensures highly consistent values among all stellar parameters, leading to more accurate chemical abundances. A comparison of the chemical abundances obtained here with and without the use of seismic log (g) information has shown that an underestimated (overestimated) gravity leads to an underestimated (overestimated) elemental abundance (e.g. [Mg/H] is underestimated by ∼0.25 dex when the gravity is underestimated by 0.5 dex). We then perform a comparison between the seismic gravities and the spectroscopic gravities presented in the RAVE DR4 catalogue, extracting a calibration for log (g) of RAVE giants in the colour interval 0.50 < (J-KS) < 0.85. Finally, we show a comparison of the distances, temperatures, extinctions (and ages) derived here for our RAVE K2-C1 sample with those derived in RAVE DR4 and DR5. DR5 performs better than DR4 thanks to the seismic calibration, although discrepancies can still be important for objects for which the difference between DR4/DR5 and seismic gravities differ by more than ∼0.5 dex. The method illustrated in this work will be used for analysing RAVE targets present in the other K2 campaigns, in the framework of Galactic Archaeology investigations.
  •  
11.
  • Van Eylen, Vincent, et al. (author)
  • HD 89345: A bright oscillating star hosting a transiting warm Saturn-sized planet observed by K2
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 478:4, s. 4866-4880
  • Journal article (peer-reviewed)abstract
    • We report the discovery and characterization of HD 89345b (K2-234b; EPIC 248777106b), a Saturn-sized planet orbiting a slightly evolved star. HD 89345 is a bright star (V = 9.3 mag) observed by the K2 mission with 1 min time sampling. It exhibits solar-like oscillations. We conducted asteroseismology to determine the parameters of the star, finding themass and radius to be 1.12-0.01+0.04M⊙and 1.657-0.004+0.020R⊙, respectively. The star appears to have recently left the main sequence, based on the inferred age, 9.4-1.3+0.4Gyr, and the non-detection of mixed modes. The star hosts a 'warm Saturn' (P = 11.8 d, Rp= 6.86 ± 0.14 R⊕). Radial-velocity follow-up observations performed with the FIbre-fed Echelle Spectrograph, HARPS, and HARPS-N spectrographs show that the planet has a mass of 35.7 ± 3.3 M⊕. The data also show that the planet's orbit is eccentric (e≈0.2). An investigation of the rotational splitting of the oscillation frequencies of the star yields no conclusive evidence on the stellar inclination angle. We further obtained Rossiter-McLaughlin observations, which result in a broad posterior of the stellar obliquity. The planet seems to confirm to the same patterns that have been observed for other sub-Saturns regarding planet mass and multiplicity, orbital eccentricity, and stellar metallicity.
  •  
12.
  • Andrew, Rhiann E., et al. (author)
  • Coordination Induced Atropisomerism in an NHC-Based Rhodium Macrocycle
  • 2015
  • In: Organometallics. - : American Chemical Society (ACS). - 0276-7333 .- 1520-6041. ; 34:5, s. 913-917
  • Journal article (peer-reviewed)abstract
    • Reversible interaction with carbon monoxide results in the onset of dynamic atropisomerism at 298 K in an otherwise static NHC-based rhodium pincer complex, [Rh(C boolean AND N boolean AND C-(CH2)(12))(CO)][BArF4] (1, ArF = 3,5-C6H3(CF3)(2)). The mechanism of this process has been comprehensively interrogated by a combination of variable-temperature NMR spectroscopy, IR spectroscopy, and computational modeling. In addition, a structural analogue of a high-energy symmetrical intermediate species-invoked in the process but not directly observed spectroscopically-has been prepared and characterized in solution and the solid-state.
  •  
13.
  • Concannon, T. W., et al. (author)
  • Stakeholder engagement in the design and conduct of pragmatic randomized trials
  • 2021
  • In: Pragmatic Randomized Clinical Trials. Using Primary Data Collection & Electronic Health Records. Cynthia J. Girman and Mary Elizabeth Ritchey (red.). - : Academic Press. - 9780128176634 ; , s. 33-45
  • Book chapter (other academic/artistic)abstract
    • A formal definition of “stakeholder” is “any individual or organization who is responsible for or affected by health-related decisions that can be informed by evidence.” In this chapter, we describe a fit-for-purpose approach to stakeholder engagement throughout the planning, development, and use of evidence from pragmatic clinical trials (pRCTs). We offer guidance on how to identify the aims of engagement, the stakeholders who will be involved, the roles in which they will participate, and by what modes they will interact with others on the team. We have seen growing commitments to stakeholder-engaged research in part because we believe it can help us create new evidence that is relevant to patients and other decision makers, research methods that are more transparent to decision makers, and findings that are useable in a wider range of settings. These beliefs need to be put to the test with carefully designed evaluations that assess what has been done in engagement work, how well it has been done, and what impact it has had. © 2021 Elsevier Inc. All rights reserved.
  •  
14.
  • Cuthill, Innes C., et al. (author)
  • The biology of color
  • 2017
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 357:6350
  • Research review (peer-reviewed)abstract
    • Coloration mediates the relationship between an organism and its environment in important ways, including social signaling, antipredator defenses, parasitic exploitation, thermoregulation, and protection from ultraviolet light, microbes, and abrasion. Methodological breakthroughs are accelerating knowledge of the processes underlying both the production of animal coloration and its perception, experiments are advancing understanding of mechanism and function, and measurements of color collected noninvasively and at a global scale are opening windows to evolutionary dynamics more generally. Here we provide a roadmap of these advances and identify hitherto unrecognized challenges for this multi- and interdisciplinary field.
  •  
15.
  • Gruber, D, et al. (author)
  • Fermi/GBM observations of the ultra-long GRB 091024. A burst with an optical flash
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528:A15
  • Journal article (peer-reviewed)abstract
    • Aims: In this paper we examine gamma-ray and optical data of GRB 091024, a gamma-ray burst (GRB) with an extremely long duration of T90 $\approx$ 1020 s, as observed with the Fermi Gamma-ray Burst Monitor (GBM). Methods: We present spectral analysis of all three distinct emission episodes using data from Fermi/GBM. Because of the long nature of this event, many ground-based optical telescopes slewed to its location within a few minutes and thus were able to observe the GRB during its active period. We compare the optical and gamma-ray light curves. Furthermore, we estimate a lower limit on the bulk Lorentz factor from the variability and spectrum of the GBM light curve and compare it with that obtained from the peak time of the forward shock of the optical afterglow. Results: From the spectral analysis we note that, despite its unusually long duration, this burst is similar to other long GRBs, i.e. there is spectral evolution (both the peak energy and the spectral index vary with time) and spectral lags are measured. We find that the optical light curve is highly anti-correlated to the prompt gamma-ray emission, with the optical emission reaching the maximum during an epoch of quiescence in the prompt emission. We interpret this behavior as the reverse shock (optical flash), expected in the internal-external shock model of GRB emission but observed only in a handful of GRBs so far. The lower limit on the initial Lorentz factor deduced from the variability time scale (Γmin = 195_-110+90) is consistent within the error to the one obtained using the peak time of the forward shock (Γ0 = 120) and is also consistent with Lorentz factors of other long GRBs.
  •  
16.
  • Gruber, D, et al. (author)
  • Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531:A20
  • Journal article (peer-reviewed)abstract
    • Aims: In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods: Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the νFν spectrum (Ep,rest), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (T90,rest) and the isotropic equivalent bolometric energy (Eiso). Results: The distribution of Ep,rest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at ~800 keV. No high-Ep population is found but the distribution is biased against low Ep values. We find the lowest possible Ep that GBM can recover to be $\approx$ 15 keV. The T90,rest distribution of long GRBs peaks at ~10 s. The distribution of Eiso has mean and median values of 8.9 × 1052 erg and 8.2 × 1052 erg, respectively. We confirm the tight correlation between Ep,rest and Eiso (Amati relation) and the one between Ep,rest and the 1-s peak luminosity (Lp) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index α gets softer when Ep is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither Ep,rest nor T90,rest.
  •  
17.
  • Guerry, Anne D., et al. (author)
  • Natural capital and ecosystem services informing decisions : From promise to practice
  • 2015
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:24, s. 7348-7355
  • Journal article (other academic/artistic)abstract
    • The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals.
  •  
18.
  •  
19.
  • Hon, Marc, et al. (author)
  • A close-in giant planet escapes engulfment by its star
  • 2023
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 917-920
  • Journal article (peer-reviewed)abstract
    • When main-sequence stars expand into red giants, they are expected to engulf close-in planets(1-5). Until now, the absence of planets with short orbital periods around post-expansion, core-helium-burning red giants(6-8) has been interpreted as evidence that short-period planets around Sun-like stars do not survive the giant expansion phase of their host stars(9). Here we present the discovery that the giant planet 8 Ursae Minoris b(10) orbits a core-helium-burning red giant. At a distance of only 0.5 au from its host star, the planet would have been engulfed by its host star, which is predicted by standard single-star evolution to have previously expanded to a radius of 0.7 au. Given the brief lifetime of helium-burning giants, the nearly circular orbit of the planet is challenging to reconcile with scenarios in which the planet survives by having a distant orbit initially. Instead, the planet may have avoided engulfment through a stellar merger that either altered the evolution of the host star or produced 8 Ursae Minoris b as a second-generation planet(11). This system shows that core-helium-burning red giants can harbour close planets and provides evidence for the role of non-canonical stellar evolution in the extended survival of late-stage exoplanetary systems.
  •  
20.
  •  
21.
  • Keys, Patrick W., et al. (author)
  • Atmospheric water recycling an essential feature of critical natural asset stewardship
  • 2024
  • In: Global Sustainability. - 2059-4798. ; 7
  • Journal article (peer-reviewed)abstract
    • Non-technical summary. In this paper, we explore how critically important ecosystems on the land provide evaporation to the atmosphere, which will later fall as precipitation elsewhere. Using a model-based analysis that tracks water flowing through the atmosphere, we find that more than two-thirds of the precipitation over critically important ecosystem areas is supplied by evaporation from other land. Likewise, more than 40% of the evaporation from critically important ecosystems falls as precipitation on other land. We conclude our work by discussing the policy implications for how these critically important ecosystems connect spatially distant wild and working lands via the atmospheric water cycle.Technical summary. Global ecosystems are interconnected via atmospheric water vapor flows. Land use change can modify evaporation from land, altering atmospheric moisture recycling and potentially leading to significant changes in downwind precipitation and associated ecological impacts. We combine insights on global ecosystem-regulated moisture recycling with an analysis of critical natural assets (CNA, the 30% of global land providing most of nature's contributions to people) to reveal the sources and sinks of atmospheric water cycle regulation. We find that 65% of the precipitation over CNA is supplied by evaporation from other land areas. Likewise, CNA regions supply critical moisture as precipitation to terrestrial natural ecosystems and production systems worldwide, with 44% of CNA evaporation falling on terrestrial surfaces. Specifically, the Congo River basin emerges as a hotspot of overlap between local atmospheric water cycle maintenance and concentration of nature's contributions to people. Our results suggest global priority areas for conservation efforts beyond and in support of CNA, emphasizing the importance of sparsely populated managed forests and rangelands, along with wild forests, for fostering moisture recycling to and within CNA. This work also underlines the manifold benefits associated with achieving United Nations Sustainable Development Goal #15, to sustainably manage terrestrial life and conserve biodiversity.Social media summary. Critically important ecosystems are essential for connecting distant landscapes via the atmospheric water cycle.
  •  
22.
  • Kunder, Andrea, et al. (author)
  • THE RADIAL VELOCITY EXPERIMENT (RAVE) : FIFTH DATA RELEASE
  • 2017
  • In: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:2
  • Journal article (peer-reviewed)abstract
    • Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the Southern Hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) covering the Ca-triplet region (8410-8795 A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalog of red giant stars in the dereddened color - (J Ks) 0 interval (0.50, 0.85) for which the gravities were calibrated based only on seismology. Further data products for subsamples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the VizieR database.
  •  
23.
  • Mitchell, James W., et al. (author)
  • Development of an International Standard Set of Outcomes and Measurement Methods for Routine Practice for Adults with Epilepsy: The International Consortium for Health Outcomes Measurement Consensus Recommendations
  • 2024
  • In: EPILEPSIA. - 0013-9580 .- 1528-1167.
  • Journal article (peer-reviewed)abstract
    • At present, there is no internationally accepted set of core outcomes or measurement methods for epilepsy clinical practice. Therefore, the International Consortium for Health Outcomes Measurement (ICHOM) convened an international working group of experts in epilepsy, people with epilepsy and their representatives to develop minimum sets of standardized outcomes and outcomes measurement methods for clinical practice that support patient-clinician decision-making and quality improvement. Consensus methods identified 20 core outcomes. Measurement tools were recommended based on their evidence of strong clinical measurement properties, feasibility, and cross-cultural applicability. The essential outcomes included many non-seizure outcomes: anxiety, depression, suicidality, memory and attention, sleep quality, functional status, and the social impact of epilepsy. The proposed set will facilitate the implementation of the use of patient-centered outcomes in daily practice, ensuring holistic care. They also encourage harmonization of outcome measurement, and if widely implemented should reduce the heterogeneity of outcome measurement, accelerate comparative research, and facilitate quality improvement efforts.
  •  
24.
  • Rendle, B. M., et al. (author)
  • The K2 Galactic Caps Project - going beyond the Kepler field and ageing the Galactic disc
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 490:4, s. 4465-4480
  • Journal article (peer-reviewed)abstract
    • Analyses of data from spectroscopic and astrometric surveys have led to conflicting results concerning the vertical characteristics of the Milky Way. Ages are often used to provide clarity, but typical uncertainties of >40 per cent from photometry restrict the validity of the inferences made. Using the Kepler APOKASC sample for context, we explore the global population trends of two K2 campaign fields (3 and 6), which extend further vertically out of the Galactic plane than APOKASC. We analyse the properties of red giant stars utilizing three asteroseismic data analysis methods to cross-check and validate detections. The Bayesian inference tool PARAM is used to determine the stellar masses, radii, and ages. Evidence of a pronounced red giant branch bump and an [a/Fe] dependence on the position of the red clump is observed from the K2 fields radius distribution. Two peaks in the age distribution centred at similar to 5 and similar to 12 Gyr are found using a sample with sigma(age) < 35 per cent. In comparison with Kepler, we find the older peak to be more prominent for K2. This age bimodality is also observed based on a chemical selection of low-[alpha/Fe] (<= 0.1) and high-[alpha/Fe] (>0.1) stars. As a function of vertical distance from the Galactic mid-plane (|Z|), the age distribution shows a transition from a young to old stellar population with increasing |Z| for the K2 fields. Further coverage of campaign targets with high-resolution spectroscopy is required to increase the yield of precise ages achievable with asteroseismology.
  •  
25.
  • Udayappan, S. D., et al. (author)
  • Intestinal Ralstonia pickettii augments glucose intolerance in obesity
  • 2017
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 12:11
  • Journal article (peer-reviewed)abstract
    • An altered intestinal microbiota composition has been implicated in the pathogenesis of metabolic disease including obesity and type 2 diabetes mellitus (T2DM). Low grade inflammation, potentially initiated by the intestinal microbiota, has been suggested to be a driving force in the development of insulin resistance in obesity. Here, we report that bacterial DNA is present in mesenteric adipose tissue of obese but otherwise healthy human subjects. Pyrosequencing of bacterial 16S rRNA genes revealed that DNA from the Gram-negative species Ralstonia was most prevalent. Interestingly, fecal abundance of Ralstonia pickettii was increased in obese subjects with pre-diabetes and T2DM. To assess if R. pickettii was causally involved in development of obesity and T2DM, we performed a proof-of-concept study in diet-induced obese (DIO) mice. Compared to vehicle-treated control mice, R. pickettii-treated DIO mice had reduced glucose tolerance. In addition, circulating levels of endotoxin were increased in R. pickettii-treated mice. In conclusion, this study suggests that intestinal Ralstonia is increased in obese human subjects with T2DM and reciprocally worsens glucose tolerance in DIO mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 25
Type of publication
journal article (23)
research review (1)
book chapter (1)
Type of content
peer-reviewed (23)
other academic/artistic (2)
Author/Editor
Connaughton, V. (7)
von Kienlin, A. (7)
Wilson-Hodge, C. (7)
Bissaldi, E. (7)
Guiriec, S. (7)
Briggs, M. S. (6)
show more...
Ohsugi, T. (5)
Winer, B. L. (5)
Ackermann, M. (5)
Kocevski, D. (5)
Gehrels, N. (5)
De Angelis, A. (5)
Hanabata, Y. (5)
Hayashida, M. (5)
Longo, F. (5)
Paneque, D. (5)
Torres, D. F. (5)
Razzaque, S. (5)
Bregeon, J. (5)
Reimer, O. (5)
Tibaldo, L. (5)
de Palma, F. (5)
Baldini, L. (5)
Barbiellini, G. (5)
Bellazzini, R. (5)
Bruel, P. (5)
Caliandro, G. A. (5)
Cameron, R. A. (5)
Caraveo, P. A. (5)
Cecchi, C. (5)
Chiang, J. (5)
Ciprini, S. (5)
Cohen-Tanugi, J. (5)
Favuzzi, C. (5)
Fusco, P. (5)
Gargano, F. (5)
Giglietto, N. (5)
Giordano, F. (5)
Loparco, F. (5)
Lovellette, M. N. (5)
Lubrano, P. (5)
Mazziotta, M. N. (5)
Michelson, P. F. (5)
Mizuno, T. (5)
Morselli, A. (5)
Nuss, E. (5)
Pesce-Rollins, M. (5)
Piron, F. (5)
Porter, T. A. (5)
Raino, S. (5)
show less...
University
Stockholm University (10)
Lund University (7)
Royal Institute of Technology (6)
University of Gothenburg (3)
Uppsala University (3)
Linnaeus University (2)
show more...
Karolinska Institutet (2)
Umeå University (1)
Chalmers University of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (25)
Research subject (UKÄ/SCB)
Natural sciences (20)
Medical and Health Sciences (3)
Agricultural Sciences (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view