SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen Hongyu) "

Search: WFRF:(Chen Hongyu)

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brownstein, Catherine A., et al. (author)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Journal article (peer-reviewed)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
2.
  • Lin, Yuanyuan, et al. (author)
  • Investigation of the Reynolds number independence of cavity flow in 2D street canyons by wind tunnel experiments and numerical simulations
  • 2021
  • In: Building and Environment. - : Elsevier. - 0360-1323 .- 1873-684X. ; 201
  • Journal article (peer-reviewed)abstract
    • The Reynolds number independence (Re independence) criterion of Re > 11,000 is widely adopted to fulfill the dynamic similarity between the urban flow modeling and the down-scale measurements. However, for 2D street canyons with H/W ≥ 1.5, experiments, numerical simulations, and in-situ observations have reported different vortex-flow regimes with similar building configurations but at different scales. This study uses both wind tunnel experiments and numerical simulations to revisit the Re-independent flow regimes and Re independence criteria with an extensive Re range for idealized 2D street canyons with various aspect ratios (H/W = 1.1, 2.4, 3, 4, and 5). We introduced an optimized ratio of relative changes (RRCs) to evaluate the flow regimes’ similarity. The wind tunnel experiment confirms that the cavity flow with H/W = 1.1 meets the Re independence when reference building Re (Reref) exceeds 11,000. Simulations validated by the experiment results are conducted to investigate detailed flow regimes and the critical Re (Rec) range for each aspect ratio. The canyons with H/W = 2.4, 3, and 4 are dominated by a single asymmetric vortex when the Re independence is satisfied, while there are two vertically-stacked counter-rotating vortices in the canyon with H/W = 5. The value range of Rec increases with aspect ratio from 1.9 × 104–2.6 × 104 (H/W = 2.4) to 1.3 × 105–2.1 × 105 (H/W = 3), and 2.1 × 106–6.4 × 106 (H/W = 4 and 5). Our results indicate that the fully Re-independent flow regimes in deep canyons have fewer vortices than the literature value with down-scale experiments and simulations. The variant Rec with different aspect ratios suggests the requirement to conduct the Re-independence test for different model configurations.
  •  
3.
  • Mao, Jiwei, 1990, et al. (author)
  • Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms
  • 2024
  • In: Biotechnology Advances. - 0734-9750. ; 74
  • Research review (peer-reviewed)abstract
    • Metabolic burden is defined by the influence of genetic manipulation and environmental perturbations on the distribution of cellular resources. The rewiring of microbial metabolism for bio-based chemical production often leads to a metabolic burden, followed by adverse physiological effects, such as impaired cell growth and low product yields. Alleviating the burden imposed by undesirable metabolic changes has become an increasingly attractive approach for constructing robust microbial cell factories. In this review, we provide a brief overview of metabolic burden engineering, focusing specifically on recent developments and strategies for diminishing the burden while improving robustness and yield. A variety of examples are presented to showcase the promise of metabolic burden engineering in facilitating the design and construction of robust microbial cell factories. Finally, challenges and limitations encountered in metabolic burden engineering are discussed.
  •  
4.
  •  
5.
  • Abolfathi, Bela, et al. (author)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • In: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Journal article (peer-reviewed)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
6.
  • Chen, Hongyu, et al. (author)
  • Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting
  • 2020
  • In: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 389
  • Journal article (peer-reviewed)abstract
    • The effects of chicken manure biochar (CMB) and chicken manure integrated microbial consortium (CMMC) as co-amendments were assessed on compost maturity and reduction of greenhouse gases and ammonia (NH3) emissions during chicken manure composting. Composting was conducted using six combinations of CMB and CMCC (0 % CMB + 0 % CMMC, 0 % CMB + 10 % CMMC, 2 % CMB + 10 % CMMC, 4 % CMB + 10 % CMMC, 6 % CMB + 10 % CMMC, 10 % CMB + 10 % CMMC added on a dry weight basis) in six polyvinyl chloride composting reactors for 42 days under an aerobic environment. Co-amendment of CMB and CMMC extended the thermophilic stage and promoted compost maturity. The release of greenhouse gases [nitrous oxide (N2O) and methane (CH4)] and NH3 from treatments co-amended by CMB and CMMC were reduced by 19.0-27.4 %, 9.3-55.9 % and 24.2-56.9 %, respectively, compared with the control. In addition, a redundancy analysis showed that the C/N ratio and temperature had a significant relationship with greenhouse gases and NH3 emissions among all physiochemical characteristics.
  •  
7.
  • Chen, Zhishan, et al. (author)
  • Fine-mapping analysis including over 254 000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes
  • 2024
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
  •  
8.
  • Hou, Qiong, et al. (author)
  • A triphenylamine-based four-armed molecule for solution-processed organic solar cells with high photo-voltage
  • 2013
  • In: JOURNAL OF MATERIALS CHEMISTRY A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 1:16, s. 4937-4940
  • Journal article (peer-reviewed)abstract
    • A new four-armed molecule Th-4(DTPAB) with a triphenylamine-benzothiadiazole-triphenylamine unit as the core and 4-hexylthiophene as arms was synthesized. Solution-processed organic solar cells based on blends of Th-4(DTPAB) and PC71BM demonstrate a power conversion efficiency of 3.18% with a high open circuit voltage of 0.96 V.
  •  
9.
  • Mukesh Kumar, Awasthi, et al. (author)
  • A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives
  • 2019
  • In: Renewable & sustainable energy reviews. - : Elsevier BV. - 1364-0321 .- 1879-0690. ; , s. 115-131
  • Journal article (peer-reviewed)abstract
    • Total livestock emissions account for up to 14.5% of man-made greenhouse gas emissions. Counteractive measures, such as circular economy concepts and negative emission technologies are necessary to limit global warming below 1.5 °C. Possible treatment options for organic manure include anaerobic digestion, combustion, gasification, hydrothermal liquefaction and composting. The choice of treatment varies depending on the economics, the requirement of a specific product, and sociocultural factors. Commercialization of these treatments needs a blend of appropriate technology, feasible economics, policy support and agreeable socio-cultural conditions. Key findings of this study include the following: 1. Increasing scientific awareness about manure management and treatment; 2. Building a sustainable cooperative model to commercialize technologies; 3. Creating a market for manure recycling products; 4. The role of policy in supporting technologies and consumers; and 5. The codigestion of substrates for better efficacy. Current trends show minimal actions in place as opposed to the high-rate of acceleration that is necessary.
  •  
10.
  • Mukesh Kumar, Awasthi, et al. (author)
  • Metagenomics for taxonomy profiling : tools and approaches
  • 2020
  • In: Bioengineered. - : Taylor & Francis. - 2165-5979 .- 2165-5987. ; 11:1, s. 356-374
  • Journal article (peer-reviewed)abstract
    • The study of metagenomics is an emerging field that identifies the total genetic materials in an organism along with the set of all genetic materials like deoxyribonucleic acid and ribose nucleic acid, which play a key role with the maintenance of cellular functions. The best part of this technology is that it gives more flexibility to environmental microbiologists to instantly pioneer the immense genetic variability of microbial communities. However, it is intensively complex to identify the suitable sequencing measures of any specific gene that can exclusively indicate the involvement of microbial metagenomes and be able to advance valuable results about these communities. This review provides an overview of the metagenomic advancement that has been advantageous for aggregation of more knowledge about speci?c genes, microbial communities and its metabolic pathways. More speci?c drawbacks of metagenomes technology mainly depend on sequence-based analysis. Therefore, this ‘targeted based metagenomics’ approach will give comprehensive knowledge about the ecological, evolutionary and functional sequence of significantly important genes that naturally exist in living beings either human, animal and microorganisms from distinctive ecosystems.
  •  
11.
  • Qin, Shiyi, et al. (author)
  • Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy
  • 2021
  • In: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976.
  • Journal article (peer-reviewed)abstract
    • In this review investigate the apple orchard waste (AOW) is potential organic resources to produce multi-product and there sustainable interventions with biorefineries approaches to assesses the apple farm industrial bioeconomy. The thermochemical and biological processes like anaerobic digestion, composting and , etc., that generate distinctive products like bio-chemicals, biofuels, biofertilizers, animal feed and biomaterial, etc can be employed for AOW valorization. Integrating these processes can enhanced the yield and resource recovery sustainably. Thus, employing biorefinery approaches with allied different methods can link to the progression of circular bioeconomy. This review article mainly focused on the different biological processes and thermochemical that can be occupied for the production of waste to-energy and multi-bio-product in a series of reaction based on sustainability. Therefore, the biorefinery for AOW move towards identification of the serious of the reaction with each individual thermochemical and biological processes for the conversion of one-dimensional providences to circular bioeconomy.
  •  
12.
  • Thrane, Kim, et al. (author)
  • Single-Cell and Spatial Transcriptomic Analysis of Human Skin Delineates Intercellular Communication and Pathogenic Cells
  • 2023
  • In: Journal of Investigative Dermatology. - : Elsevier BV. - 0022-202X .- 1523-1747. ; 143:11, s. 13-2177
  • Journal article (peer-reviewed)abstract
    • Epidermal homeostasis is governed by a balance between keratinocyte proliferation and differentiation with contributions from cell–cell interactions, but conserved or divergent mechanisms governing this equilibrium across species and how an imbalance contributes to skin disease are largely undefined. To address these questions, human skin single-cell RNA sequencing and spatial transcriptomics data were integrated and compared with mouse skin data. Human skin cell–type annotation was improved using matched spatial transcriptomics data, highlighting the importance of spatial context in cell-type identity, and spatial transcriptomics refined cellular communication inference. In cross-species analyses, we identified a human spinous keratinocyte subpopulation that exhibited proliferative capacity and a heavy metal processing signature, which was absent in mouse and may account for species differences in epidermal thickness. This human subpopulation was expanded in psoriasis and zinc-deficiency dermatitis, attesting to disease relevance and suggesting a paradigm of subpopulation dysfunction as a hallmark of the disease. To assess additional potential subpopulation drivers of skin diseases, we performed cell-of-origin enrichment analysis within genodermatoses, nominating pathogenic cell subpopulations and their communication pathways, which highlighted multiple potential therapeutic targets. This integrated dataset is encompassed in a publicly available web resource to aid mechanistic and translational studies of normal and diseased skin.
  •  
13.
  • Wainaina, Steven, et al. (author)
  • Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies
  • 2020
  • In: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976.
  • Journal article (peer-reviewed)abstract
    • With the inevitable rise in human population, resource recovery from waste stream is becoming important for a sustainable economy, conservation of the ecosystem as well as for reducing the dependence on the finite natural resources. In this regard, a bio-based circular economy considers organic wastes and residues as potential resources that can be utilized to supply chemicals, nutrients, and fuels needed by mankind. This review explored the role of aerobic and anaerobic digestion technologies for the advancement of a bio-based circular society. The developed routes within the anaerobic digestion domain, such as the production of biogas and other high-value chemicals (volatile fatty acids) were discussed. The potential to recover important nutrients, such as nitrogen through composting, was also addressed. An emphasis was made on the innovative models for improved economics and process performance, which include co-digestion of various organic solid wastes, recovery of multiple bio-products, and integrated bioprocesses.
  •  
14.
  • Wang, Hongyu, et al. (author)
  • Exploration of selective copper ion separation from wastewater via capacitive deionization with highly effective 3D carbon framework-anchored Co(PO3)2 electrode
  • 2024
  • In: Separation and Purification Technology. - : ELSEVIER. - 1383-5866 .- 1873-3794. ; 336
  • Journal article (peer-reviewed)abstract
    • The increasing amount of heavy metal copper ions (Cu2+) in industrial emissions, poses a serious threat to human health, biological environment, and resource scarcity. Capacitive deionization (CDI) is considered as a green and efficient method for desalination. It is crucial to develop high-performance electrodes for efficient operation of CDI that go beyond conventional carbon and yield considerable environmental benefits. Here, metal organic frameworks (MOFs) derived carbon-loaded cobalt metaphosphate (NC-Co(PO3)2) was prepared by lowtemperature gas-solid phosphating for Cu2+ removal as CDI electrode for the first time. NC-Co(PO3)2 demonstrated superior electrode structure and function due to the synergistic effects of electric double layer coupling PO bonds, the binding tendency of metaphosphate groups with Cu2+, and interfacial redox reactions induced by the labile valence state of cobalt. The optimal electrosorption capacity of NC-Co(PO3)2 was 95.41 mg g-1 at 1 V in 50 mL Cu2+ solution with splendid cyclic regeneration capability. Moreover, NC-Co(PO3)2 exhibited excellent selectivity and outstanding electrosorption performance in the presence of multiple coexisting ions and this CDI system realized the purification of actual copper-containing wastewater. A series of characterizations further revealed the specific mechanism of Cu2+ in adsorption-desorption process. Our finding strongly supported NCCo(PO3)2 electrode can extend the CDI platform's capability for effectively removing and retrieving Cu2+ from wastewater.
  •  
15.
  • Wu, Guoqing, et al. (author)
  • Copper hexacyanoferrate/carbon sheet combination with high selectivity and capacity for copper removal by pseudocapacitance
  • 2024
  • In: Journal of Colloid and Interface Science. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0021-9797 .- 1095-7103. ; 659, s. 993-1002
  • Journal article (peer-reviewed)abstract
    • The efficient capture of copper ions (Cu2+) in wastewater has dual significance in pollution control and resource recovery. Prussian blue analog (PBA)-based pseudocapacitive materials with open frameworks and abundant metal sites have attracted considerable attention as capacitive deionization (CDI) electrodes for copper removal. In this study, the efficiency of copper hexacyanoferrate (CuHCF) as CDI electrode for Cu2+ treating was evaluated for the first time upon the successful synthesis of copper hexacyanoferrate/carbon sheet combination (CuHCF/C) by introducing carbon sheet as conductive substrate. CuHCF/C exhibited significant pseudocapacitance and high specific capacitance (52.92 F g-1) through the intercalation, deintercalation, and coupling of Cu+/Cu2+ and Fe2+/Fe3+ redox pairs. At 0.8 an applied voltage and CuSO4 feed liquid concentration of 100 mg L-1, the salt adsorption capacity was 134.47 mg g-1 higher than those of most reported electrodes. Moreover, CuHCF/C demonstrated excellent Cu2+ selectivity in multi -ion coexisting solutions and in actual wastewater experiments. Density functional theory (DFT) calculations were employed to elucidate the mechanism. This study not only reveals the essence of Cu2+ deionization by PBAs pseudocapacitance with promising potential applications but also provides a new strategy for selecting efficient CDI electrodes for Cu2+ removal.
  •  
16.
  • Wu, Guoqing, et al. (author)
  • Gas exfoliation induced N, S-doped porous 2D carbon nanosheets for effective removal of copper ions by capacitive deionization
  • 2023
  • In: Desalination. - : ELSEVIER. - 0011-9164 .- 1873-4464. ; 565
  • Journal article (peer-reviewed)abstract
    • Using capacitive deionization to remove heavy metal ions from water has received much attention, but the inferior salt adsorption capacity (SAC) of electrode materials has always limited its practical application. Herein, N, S co-doped two-dimensional (2D) porous glucose derived carbon nanosheets (NSPGC) was successfully fabricated, utilizing the gas exfoliation by calcination of thiourea. The NSPGC demonstrates distinct 2D lamellas, high specific surface area (2529 m2 g-1), hierarchical pore structure and high wettability. In electrochemical tests, a high specific capacitance (127 F g-1) and electrons/ions transport performance can be achieved in the NSPGC, moreover it showed a prominent SAC of 206.57 mg g-1 and recoverability in 100 mg L-1 CuSO4 solution. Moreover, the density functional theory (DFT) calculation manifested the intrinsic affinity of Cu2+ improved by N, S co-doping, which played an essential role in enhancing the Cu2+ removal performance of CDI. Our work provided a new insight into the preparation of high-performance CDI electrode materials for Cu2+ removal and promoted the application of CDI in heavy metal wastewater.
  •  
17.
  • Xie, Shijie, et al. (author)
  • Modeling description of interface shear deformation : A theoretical study on damage statistical distributions
  • 2023
  • In: Construction and Building Materials. - : Elsevier BV. - 0950-0618 .- 1879-0526. ; 394
  • Journal article (peer-reviewed)abstract
    • The shear constitutive model is important for the analysis of the interface shear deformation mechanism. In this study, five statistical distributions, including four that have never been applied in interface shear deformation, are introduced to describe the damage evolution of the interface. The corresponding statistical damage constitutive models are developed, and they have been validated using a series of experimental data (both laboratory and in-situ tests) at the rock-concrete interface. The comparison results with laboratory data show that the Mitscherlich model has the lowest prediction accuracy. By comparing with in-situ data, the Weibull model shows the best-predicted performance. Based on the Akaike information criterion metric, the Morgan-Mercer-Flodin (MMF) model performs much better than the other models in the laboratory tests, which indicates the MMF model can be introduced for a comprehensive analysis of interface shear deformation. In addition, the similarities between the MMF model and the Weibull model are found through the canonical transformation of the MMF model. And the analysis of the two unknown parameters of the MMF model shows that they are related to the yield characteristics and strength characteristics of the interface, respectively. Based on the damage variable evolution, the shear deformation of the interface can be divided into three phases, i.e., damage initiation phase, damage acceleration phase and damage slowing phase. And the parameters of the MMF model have an important influence on the damage variable curves.
  •  
18.
  • Xie, Shijie, et al. (author)
  • Prediction of shear strength of rock fractures using support vector regression and grid search optimization
  • 2023
  • In: Materials Today Communications. - : ELSEVIER. - 2352-4928. ; 36
  • Journal article (peer-reviewed)abstract
    • The shear strength of rock fractures serves as a crucial control on the strength and deformation behavior of engineering rock masses. To reduce the uncertainties in the shear strength evaluation, a hybrid machine learning model (GS-SVR model) of the support vector regression (SVR) underpinned by the grid search optimization algorithm (GS) was proposed. It achieves the prediction of shear strength by generalization and deduction of a large amount of data on rock fracture parameters, which avoids the complex derivation of theoretical equations. For practical application, a dataset comprising more than 134 shear tests on various rocks was compiled to collect the relevant three-dimensional morphological and mechanical parameters for training and prediction. Three classical shear strength models and the original SVR model were introduced for further comparison. Finally, sensitivity analysis was carried out to explore the relative importance of input variables to the shear strength. The results showed that the GS-SVR model (correlation coefficient R2 = 0.984, root mean squared error RMSE=0.383) outperformed the original SVR model (R2 = 0.936, RMSE=0.568). Moreover, compared with three classical shear strength models, the prediction results of the GS-SVR model were also most consistent with the experimental results (with the lowest RMSE and the highest R2). This machine learning model enhanced by GS can be used as a reliable and accurate shear strength prediction tool to partially replace laboratory tests to save costs.
  •  
19.
  • Yang, Hongyu, et al. (author)
  • Integrated impacts of tree planting and street aspect ratios on CO dispersion and personal exposure in full-scale street canyons
  • 2020
  • In: Building and Environment. - : Elsevier. - 0360-1323 .- 1873-684X. ; 169
  • Journal article (peer-reviewed)abstract
    • Validated by experimental data, this paper performs computational fluid dynamics (CFD) simulations to investigate the influence of tree plantings on urban airflow and vehicular CO exposure in two-dimensional (2D) street canyons with various aspect ratios (building height/street width, AR = H/W = 0.5, 1, 3, 5) and ground-level source. The impacts of tree canopy bottom height (Htb = 2 m, 6 m), tree stand density (y-density = 0.33, 0.67, 1) and leaf area density (LAD = 0.5, 1, 2 m2/m3) are considered. Personal intake fraction (P_IF) and its spatial mean value in leeward and windward sides (<P_IF>lee, <P_IF>wind) and for entire streets (street intake fraction, <P_IF>) are adopted to assess overall pollutant exposure. For cases without trees, only one main vortex exists in shallow streets with AR = 0.5-3 and <P_IF> as AR = 3 (5.80 ppm) slightly exceeds AR = 0.5-1 (3.98-3.84 ppm). However, two counter-rotating vortexes appear in deep streets (AR = 5), inducing 1-2 orders smaller pedestrian-level velocity (U/Uref~10−4-10−3) and one-order greater <P_IF> (46.80 ppm) than shallow streets. Trees always weaken wind in streets and raise <P_IF> more in shallower streets by 46.0% as AR = 0.5 (3.98 ppm-5.81 ppm), 26.0-45.9% as AR = 1 (3.84 ppm to 4.84-5.60 ppm), 16.2-50.3% as AR = 3 (5.80 ppm to 6.74-8.72 ppm), but only 8.5-23.4% as AR = 5 (46.80 ppm to 50.78-57.73 ppm). Particularly, as AR = 1, trees raise <P_IF>lee (5.87 ppm) by 27.1-57.2%, while <P_IF>wind (1.80 ppm) only by 0%-23.3%. Higher Htb, smaller y-density or LAD produce less increase of <P_IF>. As AR = 3, vegetation increases <P_IF>lee (8.84 ppm) by 21.2%-66.4% but little affects <P_IF>wind (2.76 ppm). Lower Htb produces smaller <P_IF> differing from AR = 1. As AR = 5, vegetation increases <P_IF>wind (63.97 ppm) by 15.1-36.6% but reduces <P_IF>lee (29.63 ppm) by 5.2-8.5%. Although further investigations are still required for design purpose, this paper provides effective methodologies to quantify how vegetation influences street-scale pollutant exposure.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19
Type of publication
journal article (18)
research review (1)
Type of content
peer-reviewed (19)
Author/Editor
Liu, Xianjie (3)
Taherzadeh, Mohammad ... (3)
Zhang, Yan (1)
Galbany, Lluís (1)
Slosar, Anze (1)
Chang-Claude, Jenny (1)
show more...
Wang, Kai (1)
Nielsen, Jens B, 196 ... (1)
Huss, Mikael (1)
Sun, Jing (1)
Li, Cheng (1)
Abolfathi, Bela (1)
Aguado, D. S. (1)
Aguilar, Gabriela (1)
Prieto, Carlos Allen ... (1)
Holtzman, Jon A. (1)
Ananna, Tonima Tasni ... (1)
Anders, Friedrich (1)
Anderson, Scott F. (1)
Andrews, Brett H. (1)
Anguiano, Borja (1)
Aragon-Salamanca, Al ... (1)
Argudo-Fernandez, Ma ... (1)
Armengaud, Eric (1)
Ata, Metin (1)
Aubourg, Eric (1)
Avila-Reese, Vladimi ... (1)
Badenes, Carles (1)
Bailey, Stephen (1)
Balland, Christophe (1)
Barger, Kathleen A. (1)
Barrera-Ballesteros, ... (1)
Bartosz, Curtis (1)
Bastien, Fabienne (1)
Bates, Dominic (1)
Baumgarten, Falk (1)
Bautista, Julian (1)
Beaton, Rachael (1)
Beers, Timothy C. (1)
Belfiore, Francesco (1)
Bender, Chad F. (1)
Bernardi, Mariangela (1)
Bershady, Matthew A. (1)
Beutler, Florian (1)
Bird, Jonathan C. (1)
Bizyaev, Dmitry (1)
Blanc, Guillermo A. (1)
Blanton, Michael R. (1)
Blomqvist, Michael (1)
Bolton, Adam S. (1)
show less...
University
University of Borås (5)
Royal Institute of Technology (4)
Linköping University (4)
University of Gävle (2)
Karolinska Institutet (2)
University of Gothenburg (1)
show more...
Umeå University (1)
Stockholm University (1)
Lund University (1)
Malmö University (1)
Chalmers University of Technology (1)
show less...
Language
English (19)
Research subject (UKÄ/SCB)
Natural sciences (7)
Engineering and Technology (5)
Medical and Health Sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view