SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Christiansen Rasmus L.) "

Search: WFRF:(Christiansen Rasmus L.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bernchou, Uffe, et al. (author)
  • End-to-end validation of the geometric dose delivery performance of MR linac adaptive radiotherapy
  • 2021
  • In: Physics in Medicine and Biology. - : Institute of Physics Publishing (IOPP). - 0031-9155 .- 1361-6560. ; 66:4
  • Journal article (peer-reviewed)abstract
    • The clinical introduction of hybrid magnetic resonance (MR) guided radiotherapy (RT) delivery systems has led to the need to validate the end-to-end dose delivery performance on such machines. In the current study, an MR visible phantom was developed and used to test the spatial deviation between planned and delivered dose at two 1.5 T MR linear accelerator (MR linac) systems, including pre-treatment imaging, dose planning, online imaging, image registration, plan adaptation, and dose delivery. The phantom consisted of 3D printed plastic and MR visible silicone rubber. It was designed to minimise air gaps close to the radiochromic film used as a dosimeter. Furthermore, the phantom was designed to allow submillimetre, reproducible positioning of the film in the phantom. At both MR linac systems, 54 complete adaptive, MR guided RT workflow sessions were performed. To test the dose delivery performance of the MR linac systems in various adaptive RT (ART) scenarios, the sessions comprised a range of systematic positional shifts of the phantom and imaging or plan adaptation conditions. In each workflow session, the positional translation between the film and the adaptive planned dose was determined. The results showed that the accuracy of the MR linac systems was between 0.1 and 0.9 mm depending on direction. The highest mean deviance observed was in the posterior-anterior direction, and the direction of the error was consistent between centres. The precision of the systems was related to whether the workflow utilized the internal image registration algorithm of the MR linac. Workflows using the internal registration algorithm led to a worse precision (0.2-0.7 mm) compared to workflows where the algorithm was decoupled (0.2 mm). In summary, the spatial deviation between planned and delivered dose of MR-guided ART at the two MR linac systems was well below 1 mm and thus acceptable for clinical use.
  •  
2.
  • Thalund-Hansen, Rasmus, et al. (author)
  • Assessing Contaminant Mass Discharge Uncertainty With Application of Hydraulic Conductivities Derived From Geoelectrical Cross-Borehole Induced Polarization and Other Methods
  • 2023
  • In: Water Resources Research. - 0043-1397. ; 59:8
  • Journal article (peer-reviewed)abstract
    • A new methodology was developed to support contaminant mass discharge (CMD)-based risk assessment of groundwater contamination downgradient of point source zones. Geoelectrical cross-borehole induced polarization (IP) data were collected at a site undergoing in situ remediation of chlorinated solvents for determining 2D hydraulic conductivity (K) distributions with an inversion model resolution of 0.15 m (vertically) x 0.50 m (horizontally) in three control planes from 10 to 20 m depth. Additionally, 18 slug tests and 31 grain size distribution analyses (GSA) from the control planes, were used for K-estimation. The geometric means and variance of the IP, slug test, and GSA derived K-estimates were consistent with previously studied sandy aquifers. Furthermore, the vertical variation in K between two geological settings, a sandy till and a meltwater sand formation, was clearly identified by the IP K-estimates. The vertical variation was backed up by hydraulic profiling tool (HPT) measurements. Random realizations of CMD were simulated based on the cross-borehole IP derived K-values. For comparison, the CMD was also estimated with a geostatistical conditional simulation approach, using the data from slug tests and GSAs. The high IP resolution captured the small scale variations in K across the transects and led to CMD predictions with a narrow uncertainty interval, whereas slug test and GSA either under- or overestimated the magnitude of the areas with the highest CMD. Applying the geophysical cross-borehole method for estimating K-distributions in addition to traditional methods would improve CMD-based risk assessment and evaluation of remediation performance at contaminated sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view