SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Claeys Arne) "

Search: WFRF:(Claeys Arne)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Borenäs, Marcus, et al. (author)
  • ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation
  • 2021
  • In: EMBO Journal. - : John Wiley & Sons. - 0261-4189 .- 1460-2075. ; 40:3
  • Journal article (peer-reviewed)abstract
    • High‐risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high‐risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8–10% of primary NB patients are ALK‐positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the “2p‐gain” region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v‐sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI‐sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p‐gain, may benefit from ALK TKI‐based therapeutic intervention.
  •  
2.
  • Gabre, Jonatan L., 1988, et al. (author)
  • Preclinical exploration of the DNA damage response pathway using the interactive neuroblastoma cell line explorer CLEAN
  • 2024
  • In: NAR Cancer. - 2632-8674. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Neuroblastoma (NB) is the most common cancer in infancy with an urgent need for more efficient targeted therapies. The development of novel (combinatorial) treatment strategies relies on extensive explorations of signaling perturbations in neuroblastoma cell lines, using RNA-Seq or other high throughput technologies (e.g. phosphoproteomics). This typically requires dedicated bioinformatics support, which is not always available. Additionally, while data from published studies are highly valuable and raw data (e.g. fastq files) are nowadays released in public repositories, data processing is time-consuming and again difficult without bioinformatics support. To facilitate NB research, more user-friendly and immediately accessible platforms are needed to explore newly generated as well as existing high throughput data. To make this possible, we developed an interactive data centralization and visualization web application, called CLEAN (the Cell Line Explorer web Application of Neuroblastoma data; https://ccgg.ugent.be/shiny/clean/). By focusing on the regulation of the DNA damage response, a therapeutic target of major interest in neuroblastoma, we demonstrate how CLEAN can be used to gain novel mechanistic insights and identify putative drug targets in neuroblastoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view