SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Classen Aimee T.) "

Search: WFRF:(Classen Aimee T.)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Santangelo, James S., et al. (author)
  • Global urban environmental change drives adaptation in white clover
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375
  • Journal article (peer-reviewed)abstract
    • Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
  •  
2.
  • Potapov, Anton M., et al. (author)
  • Global fine-resolution data on springtail abundance and community structure
  • 2024
  • In: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
  •  
3.
  • Zak, Donald R., et al. (author)
  • Exploring the role of ectomycorrhizal fungi in soil carbon dynamics
  • 2019
  • In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 223:1, s. 33-39
  • Journal article (peer-reviewed)abstract
    • The extent to which ectomycorrhizal (ECM) fungi enable plants to access organic nitrogen (N) bound in soil organic matter (SOM) and transfer this growth-limiting nutrient to their plant host, has important implications for our understanding of plant–fungal interactions, and the cycling and storage of carbon (C) and N in terrestrial ecosystems. Empirical evidence currently supports a range of perspectives, suggesting that ECM vary in their ability to provide their host with N bound in SOM, and that this capacity can both positively and negatively influence soil C storage. To help resolve the multiplicity of observations, we gathered a group of researchers to explore the role of ECM fungi in soil C dynamics, and propose new directions that hold promise to resolve competing hypotheses and contrasting observations. In this Viewpoint, we summarize these deliberations and identify areas of inquiry that hold promise for increasing our understanding of these fundamental and widespread plant symbionts and their role in ecosystem-level biogeochemistry.
  •  
4.
  • Potapov, Anton M., et al. (author)
  • Globally invariant metabolism but density-diversity mismatch in springtails
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
  •  
5.
  • Prager, Case M., et al. (author)
  • Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment : An example from the WaRM Network
  • 2022
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 12:10
  • Journal article (peer-reviewed)abstract
    • A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.
  •  
6.
  • Blume-Werry, Gesche, et al. (author)
  • Proportion of fine roots, but not plant biomass allocation below ground, increases with elevation in arctic tundra
  • 2018
  • In: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 29:2, s. 226-235
  • Journal article (peer-reviewed)abstract
    • Questions: Roots represent a considerable proportion of biomass, primary production and litter input in arctic tundra, and plant allocation of biomass to above- or below-ground tissue in response to climate change is a key factor in the future C balance of these ecosystems. According to optimality theory plants allocate C to the above- or below-ground structure that captures the most limiting resource. We used an elevational gradient to test this theory and as a space-for-time substitution to inform on tundra carbon allocation patterns under a shifting climate, by exploring if increasing elevation was positively related to the root:shoot ratio, as well as a larger plant allocation to adsorptive over storage roots.Location: Arctic tundra heath dominated by Empetrum hermaphroditum close to Abisko, Sweden.Methods: We measured root:shoot and fine:coarse root ratios of the plant communities along an elevational gradient by sampling above- and below-ground biomass, further separating root biomass into fine (<1 mm) and coarse roots.Results: Plant biomass was higher at the lower elevations, but the root:shoot ratio did not vary with elevation. Resource allocation to fine relative to coarse roots increased with elevation, resulting in a fine:coarse root ratio that more than doubled with increasing elevation.Conclusions: Contrary to previous works, the root:shoot ratio along this elevational gradient remained stable. However, communities along our study system were dominated by the same species at each elevation, which suggests that when changes in the root:shoot ratio occur with elevation these changes may be driven by differences in allocation patterns among species and thus turnover in plant community structure. Our results further reveal that the allocation of biomass to fine relative to coarse roots can differ between locations along an elevational gradient, even when overall above- vs below-ground biomass allocation does not. Given the functionally different roles of fine vs coarse roots this could have large implications for below-ground C cycling. Our results highlight the importance of direct effects vs indirect effects (such as changes in plant community composition and nutrient availability) of climate change for future C allocation above and below ground.
  •  
7.
  • Cameron, Erin K., et al. (author)
  • Uneven global distribution of food web studies under climate change
  • 2019
  • In: Ecosphere. - : Wiley. - 2150-8925 .- 2150-8925. ; 10:3
  • Journal article (peer-reviewed)abstract
    • Trophic interactions within food webs affect species distributions, coexistence, and provision of ecosystem services but can be strongly impacted by climatic changes. Understanding these impacts is therefore essential for managing ecosystems and sustaining human well-being. Here, we conducted a global synthesis of terrestrial, marine, and freshwater studies to identify key gaps in our knowledge of climate change impacts on food webs and determine whether the areas currently studied are those most likely to be impacted by climate change. We found research suffers from a strong geographic bias, with only 3.5% of studies occurring in the tropics. Importantly, the distribution of sites sampled under projected climate changes was biased-areas with decreases or large increases in precipitation and areas with low magnitudes of temperature change were under-represented. Our results suggest that understanding of climate change impacts on food webs could be broadened by considering more than two trophic levels, responses in addition to species abundance and biomass, impacts of a wider suite of climatic variables, and tropical ecosystems. Most importantly, to enable better forecasts of biodiversity responses to dimate change, we identify critically under-represented geographic regions and climatic conditions which should be prioritized in future research.
  •  
8.
  • Classen, Aimee T., et al. (author)
  • Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions : What lies ahead?
  • 2015
  • In: Ecosphere. - 2150-8925 .- 2150-8925. ; 6:8
  • Journal article (peer-reviewed)abstract
    • Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allow co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. In this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.
  •  
9.
  • Hovenden, Mark J., et al. (author)
  • Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2
  • 2019
  • In: Nature Plants. - : Springer Science and Business Media LLC. - 2055-0278. ; 5, s. 167-173
  • Journal article (peer-reviewed)abstract
    • © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO 2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO 2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO 2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO 2 response offset each other, constraining the response of ecosystem productivity to rising CO 2 . This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO 2 could be substantially less than anticipated.
  •  
10.
  • Mayor, Jordan, et al. (author)
  • Elevation alters ecosystem properties across temperate treelines globally
  • 2017
  • In: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 542:7639, s. 91-95
  • Journal article (peer-reviewed)abstract
    • Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries(1,2). Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics(3,4). Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming(5-7). One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra(8). However, whether there are globally consistent above-and belowground responses to these transitions remains an open question(4). To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.
  •  
11.
  • Meisner, Annelein, et al. (author)
  • Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles
  • 2021
  • In: ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 15:4, s. 1207-1221
  • Journal article (peer-reviewed)abstract
    • Climate change alters frequencies and intensities of soil drying-rewetting and freezing-thawing cycles. These fluctuations affect soil water availability, a crucial driver of soil microbial activity. While these fluctuations are leaving imprints on soil microbiome structures, the question remains if the legacy of one type of weather fluctuation (e.g., drying-rewetting) affects the community response to the other (e.g., freezing-thawing). As both phenomenons give similar water availability fluctuations, we hypothesized that freezing-thawing and drying-rewetting cycles have similar effects on the soil microbiome. We tested this hypothesis by establishing targeted microcosm experiments. We created a legacy by exposing soil samples to a freezing-thawing or drying-rewetting cycle (phase 1), followed by an additional drying-rewetting or freezing-thawing cycle (phase 2). We measured soil respiration and analyzed soil microbiome structures. Across experiments, larger CO2 pulses and changes in microbiome structures were observed after rewetting than thawing. Drying-rewetting legacy affected the microbiome and CO2 emissions upon the following freezing-thawing cycle. Conversely, freezing-thawing legacy did not affect the microbial response to the drying-rewetting cycle. Our results suggest that drying-rewetting cycles have stronger effects on soil microbial communities and CO2 production than freezing-thawing cycles and that this pattern is mediated by sustained changes in soil microbiome structures.
  •  
12.
  • Metcalfe, Daniel B., et al. (author)
  • Patchy field sampling biases understanding of climate change impacts across the Arctic
  • 2018
  • In: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:9, s. 1443-1448
  • Journal article (peer-reviewed)abstract
    • Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.
  •  
13.
  • REWCASTLE, Kenna E., et al. (author)
  • Investigating drivers of microbial activity and respiration in a forested bog
  • 2020
  • In: Pedosphere. - 1002-0160. ; 30:1, s. 135-145
  • Journal article (peer-reviewed)abstract
    • Northern peatlands store nearly one-third of terrestrial carbon (C) stocks while covering only 3% of the global landmass; nevertheless, the drivers of C cycling in these often-waterlogged ecosystems are different from those that control C dynamics in upland forested soils. To explore how multiple abiotic and biotic characteristics of bogs interact to shape microbial activity in a northern, forested bog, we added a labile C tracer (13C-labeled starch) to in situ peat mesocosms and correlated heterotrophic respiration with natural variation in several microbial predictor variables, such as enzyme activity and microbial biomass, as well as with a suite of abiotic variables and proximity to vascular plants aboveground. We found that peat moisture content was positively correlated with respiration and microbial activity, even when moisture levels exceeded total saturation, suggesting that access to organic matter substrates in drier environments may be limiting for microbial activity. Proximity to black spruce trees decreased total and labile heterotrophic respiration. This negative relationship may reflect the influence of tree evapotranspiration and peat shading effects; i.e., microbial activity may decline as peat dries and cools near trees. Here, we isolated the response of heterotrophic respiration to explore the variation in, and interactions among, multiple abiotic and biotic drivers that influence microbial activity. This approach allowed us to reveal the relative influence of individual drivers on C respiration in these globally important C sinks.
  •  
14.
  • Zhao, Qiong, et al. (author)
  • Soils beneath different arctic shrubs have contrasting responses to a natural gradient in temperature
  • 2018
  • In: Ecosphere. - : Wiley-Blackwell. - 2150-8925 .- 2150-8925. ; 9:6
  • Journal article (peer-reviewed)abstract
    • Shrubs commonly form islands of fertility and are expanding their distribution and dominance in the arctic due to climate change, yet how soil properties may be influenced when different species of shrubs expand under warmer climates remains less explored. Important plant traits, such as their associated root community, are linked to functionally different and dominant shrub species in the arctic and these traits likely shape biogeochemical cycling in areas of shrub expansion. Using an elevational gradient as a proxy for warming, we explored how biochemical processes beneath two important arctic shrubs varied under warmer (low elevation) and cooler (high elevation) climates. Interestingly, the influence of elevation on biogeochemistry varied between the two shrubs. At the low elevation, Betula nana L., an ectomycorrhizal shrub, had high carbon (C) degrading enzyme activities, and relatively low potential net nitrogen (N) mineralization rates. Conversely, Empetrum nigrum ssp. hermaphroditum Hagerup, an cricoid mycorrhizal dwarf-shrub, had higher enzyme activities and net N immobilization rates at the higher elevation. Further, E. nigrum ssp. hermpahroditum appeared to have a more closed C and nutrient cycle than B. nana-enzymes degrading C, N, and phosphorus were tightly correlated with each other and with total C and ammonium concentrations in the humus beneath E. nigrum ssp. hermaphroditum, but not beneath B. nana. Our results suggest differences in the warming responses of C and N cycling beneath shrub species across an arctic tundra landscape.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14
Type of publication
journal article (14)
Type of content
peer-reviewed (14)
Author/Editor
Classen, Aimée T. (14)
Sundqvist, Maja K. (6)
Metcalfe, Daniel B. (4)
Sanders, Nathan J. (4)
Henning, Jeremiah A. (3)
Newman, Gregory S. (3)
show more...
Chisholm, Chelsea (3)
Ahlbäck Widenfalk, L ... (2)
Alatalo, Juha M. (2)
Čuchta, Peter (2)
Rashid, Muhammad Imt ... (2)
Greve, Michelle (2)
Berg, Matty P. (2)
Jochum, Malte (2)
Chen, Ting-Wen (2)
Sun, Xin (2)
Holmstrup, Martin (2)
Scheu, Stefan (2)
Janion-Scheepers, Ch ... (2)
Pollierer, Melanie M (2)
Ferlian, Olga (2)
Krab, Eveline J (2)
Bokhorst, Stef (2)
Chown, Steven L. (2)
Ellers, Jacintha (2)
Cameron, Erin K. (2)
Moore, Jessica A. M. (2)
Patterson, Courtney ... (2)
Lavorel, Sandra (2)
Chauvat, Matthieu (2)
Rousseau, Laurent (2)
Crowther, Thomas W. (2)
Thakur, Madhav P. (2)
Ochoa-Hueso, Raúl (2)
Eisenhauer, Nico (2)
Fiera, Cristina (2)
Gendreau-Berthiaume, ... (2)
Yin, Rui (2)
Grigulis, Karl (2)
Bolger, Thomas (2)
Ponge, Jean-Francois (2)
Seeber, Julia (2)
Potapov, Anton M. (2)
Alexandre, Douglas (2)
Bandyopadhyaya, Ipsa (2)
Baretta, Dilmar (2)
Bellini, Bruno C. (2)
Bernava, Verónica (2)
Castaño-Meneses, Gab ... (2)
Chomel, Mathilde (2)
show less...
University
Umeå University (9)
Swedish University of Agricultural Sciences (7)
Lund University (5)
University of Gothenburg (2)
Uppsala University (1)
Stockholm University (1)
Language
English (14)
Research subject (UKÄ/SCB)
Natural sciences (14)
Agricultural Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view