SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Crary F.) "

Search: WFRF:(Crary F.)

  • Result 1-21 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Coustenis, A., et al. (author)
  • TandEM : Titan and Enceladus mission
  • 2009
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Journal article (peer-reviewed)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
2.
  • Jakosky, B. M., et al. (author)
  • MAVEN observations of the response of Mars to an interplanetary coronal mass ejection
  • 2015
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 350:6261
  • Journal article (peer-reviewed)abstract
    • Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
  •  
3.
  • Jones, G. H., et al. (author)
  • The dust halo of Saturn's largest icy moon, Rhea
  • 2008
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 319:5868, s. 1380-1384
  • Journal article (peer-reviewed)abstract
    • Saturn's moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturn's magnetosphere. The Cassini spacecraft's in situ observations reveal that energetic electrons are depleted in the moon's vicinity. The absence of a substantial exosphere implies that Rhea's magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.
  •  
4.
  • Ma, Y. J., et al. (author)
  • Time-dependent global MHD simulations of Cassini T32 flyby : From magnetosphere to magnetosheath
  • 2009
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:3, s. A03204-
  • Journal article (peer-reviewed)abstract
    • When the Cassini spacecraft flew by Titan on 13 June 2007, at 13.6 Saturn local time, Titan was directly observed to be outside Saturn's magnetopause. Cassini observations showed dramatic changes of magnetic field orientation as well as other plasma flow parameters during the inbound and outbound segments. In this paper, we study Titan's ionospheric responses to such a sudden change in the upstream plasma conditions using a sophisticated multispecies global MHD model. Simulation results of three different cases (steady state, simple current sheet crossing, and magnetopause crossing) are presented and compared against Cassini Magnetometer, Langmuir Probe, and Cassini Plasma Spectrometer observations. The simulation results provide clear evidence for the existence of a fossil field that was induced in the ionosphere. The main interaction features, as observed by the Cassini spacecraft, are well reproduced by the time-dependent simulation cases. Simulation also reveals how the fossil field was trapped during the interaction and shows the coexistence of two pileup regions with opposite magnetic orientation, as well as the formation of a pair of new Alfven wings and tail disconnection during the magnetopause crossing process.
  •  
5.
  • Crary, John F., et al. (author)
  • Primary age-related tauopathy (PART) : a common pathology associated with human aging
  • 2014
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 128:6, s. 755-766
  • Journal article (peer-reviewed)abstract
    • We recommend a new term, "primary age-related tauopathy" (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer's disease (AD), in the absence of amyloid (A beta) plaques. For these "NFT+/A beta-aEuroe brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as "tangle-only dementia" and "tangle-predominant senile dementia", are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of A beta accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.
  •  
6.
  • Garnier, Philippe, et al. (author)
  • The influence of the secondary electrons induced by energetic electrons impacting the Cassini Langmuir probe at Saturn
  • 2013
  • In: Journal of geophysical research Space Physics. - 2169-9402. ; 118:11, s. 7054-7073
  • Journal article (peer-reviewed)abstract
    • The Cassini Langmuir Probe (LP) onboard the Radio and Plasma Wave Science experiment has provided much information about the Saturnian cold plasma environment since the Saturn Orbit Insertion in 2004. A recent analysis revealed that the LP is also sensitive to the energetic electrons (250–450 eV) for negative potentials. These electrons impact the surface of the probe and generate a current of secondary electrons, inducing an energetic contribution to the DC level of the current-voltage (I-V) curve measured by the LP. In this paper, we further investigated this influence of the energetic electrons and (1) showed how the secondary electrons impact not only the DC level but also the slope of the (I-V) curve with unexpected positive values of the slope, (2) explained how the slope of the (I-V) curve can be used to identify where the influence of the energetic electrons is strong, (3) showed that this influence may be interpreted in terms of the critical and anticritical temperatures concept detailed by Lai and Tautz (2008), thus providing the first observational evidence for the existence of the anticritical temperature, (4) derived estimations of the maximum secondary yield value for the LP surface without using laboratory measurements, and (5) showed how to model the energetic contributions to the DC level and slope of the (I-V) curve via several methods (empirically and theoretically). This work will allow, for the whole Cassini mission, to clean the measurements influenced by such electrons. Furthermore, the understanding of this influence may be used for other missions using Langmuir probes, such as the future missions Jupiter Icy Moons Explorer at Jupiter, BepiColombo at Mercury, Rosetta at the comet Churyumov-Gerasimenko, and even the probes onboard spacecrafts in the Earth magnetosphere.
  •  
7.
  • Hill, T. W., et al. (author)
  • Charged nanograins in the Enceladus plume
  • 2012
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A05209-
  • Journal article (peer-reviewed)abstract
    • There have been three Cassini encounters with the south-pole eruptive plume of Enceladus for which the Cassini Plasma Spectrometer (CAPS) had viewing in the spacecraft ram direction. In each case, CAPS detected a cold dense population of heavy charged particles having mass-to-charge (m/q) ratios up to the maximum detectable by CAPS (similar to 10(4) amu/e). These particles are interpreted as singly charged nanometer-sized water-ice grains. Although they are detected with both negative and positive net charges, the former greatly outnumber the latter, at least in the m/q range accessible to CAPS. On the most distant available encounter (E3, March 2008) we derive a net (negative) charge density of up to similar to 2600 e/cm(3) for nanograins, far exceeding the ambient plasma number density, but less than the net (positive) charge density inferred from the RPWS Langmuir probe data during the same plume encounter. Comparison of the CAPS data from the three available encounters is consistent with the idea that the nanograins leave the surface vents largely uncharged, but become increasingly negatively charged by plasma electron impact as they move farther from the satellite. These nanograins provide a potentially potent source of magnetospheric plasma and E-ring material.
  •  
8.
  • Kovacs, Gabor G., et al. (author)
  • Aging-related tau astrogliopathy (ARTAG) : harmonized evaluation strategy
  • 2016
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 131:1, s. 87-102
  • Journal article (peer-reviewed)abstract
    • Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.
  •  
9.
  • Ma, Y. J., et al. (author)
  • The importance of thermal electron heating in Titan's ionosphere : Comparison with Cassini T34 flyby
  • 2011
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A10213-
  • Journal article (peer-reviewed)abstract
    • We use a new magnetohydrodynamic (MHD) model to study the effects of thermal-electron heating in Titan's ionosphere. This model improves the previously used multispecies MHD model by solving both the electron and ion pressure equations instead of a single plasma pressure equation. This improvement enables a more accurate evaluation of ion and electron temperatures inside Titan's ionosphere. The model is first applied to an idealized case, and the results are compared in detail with those of the single-pressure MHD model to illustrate the effects of the improvement. Simulation results show that the dayside ionosphere thermal pressure is larger than the upstream pressure during normal conditions, when Titan is located in the dusk region; thus Saturn's magnetic field is shielded by the highly conducting ionosphere, similar to the interaction of Venus during solar maximum conditions. This model is also applied to a special flyby of Titan, the T34 flyby, which occurred near the dusk region. It is shown that better agreement with the magnetometer data can be achieved using the two-fluid MHD model with the inclusion of the effects of thermal electron heating. The model results clearly demonstrate the importance of thermal-electron heating in Titan's ionosphere.
  •  
10.
  • Andersson, L., et al. (author)
  • Dust observations at orbital altitudes surrounding Mars
  • 2015
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 350:6261
  • Journal article (peer-reviewed)abstract
    • Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above similar to 150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of similar to 18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.
  •  
11.
  • Desai, R. T., et al. (author)
  • Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan's Ionosphere
  • 2017
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 844:2
  • Journal article (peer-reviewed)abstract
    • Cassini discovered a plethora of neutral and ionized molecules in Titan's ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q-1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950-1300 km. We report on detections consistently centered between 25.8 and 26.0 u q-1 and between 49.0-50.1 u q(-1) which are identified as belonging to the carbon chain anions, CN-/C3N- and/or C2H-/C4H-, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73-74 u q-1 could be attributed to the further carbon chain anions C5N-/C6H- but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at > 100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below < 1100 km, the low-mass anions (< 150 u q-1) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.
  •  
12.
  • Garnier, P., et al. (author)
  • The detection of energetic electrons with the Cassini Langmuir probe at Saturn
  • 2012
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A10202-
  • Journal article (peer-reviewed)abstract
    • The Cassini Langmuir probe, part of the Radio and Plasma Wave Science (RPWS) instrument, has provided a wealth of information about the cold and dense plasma in the Saturnian system. The analysis of the ion side current (current for negative potentials) measured by the probe from 2005 to 2008 reveals also a strong sensitivity to energetic electrons (250-450 eV). These electrons impact the surface of the probe, and generate a detectable current of secondary electrons. A broad secondary electrons current region is inferred from the observations in the dipole L Shell range of similar to 6-10, with a peak full width at half maximum (FWHM) at L = 6.4-9.4 (near the Dione and Rhea magnetic dipole L Shell values). This magnetospheric flux tube region, which displays a large day/night asymmetry, is related to the similar structure in the energetic electron fluxes as the one measured by the onboard Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS). It corresponds spatially to both the outer electron radiation belt observed by the Magnetosphere Imaging Instrument (MIMI) at high energies and to the low-energy peak which has been observed since the Voyager era. Finally, a case study suggests that the mapping of the current measured by the Langmuir probe for negative potentials can allow to identify the plasmapause-like boundary recently identified at Saturn, and thus potentially identify the separation between the closed and open magnetic field lines regions.
  •  
13.
  •  
14.
  • Ma, Ying-Juan, et al. (author)
  • 3D global multi-species Hall-MHD simulation of the Cassini T9 flyby
  • 2007
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 34:24, s. L24S10-
  • Journal article (peer-reviewed)abstract
    • The wake region of Titan is an important component of Titan's interaction with its surrounding plasma and therefore a thorough understanding of its formation and structure is of primary interest. The Cassini spacecraft passed through the distant downstream region of Titan on 18: 59: 30 UT Dec. 26, 2005, which is referred to as the T9 flyby and provided a great opportunity to test our understanding of the highly dynamic wake region. In this paper we compare the observational data (from the magnetometer, plasma analyzer and Langmuir probe) with numerical results using a 7-species Hall MHD Titan model. There is a good agreement between the observed and modeled parameters, given the uncertainties in plasma measurements and the approximations inherent in the Hall MHD model. Our simulation results also show that Hall MHD model results fit the observations better than the non-Hall MHD model for the flyby, consistent with the importance of kinetic effects in the Titan interaction. Based on the model results, we also identify various regions near Titan where Hall MHD models are applicable.
  •  
15.
  • Plainaki, C., et al. (author)
  • Towards a Global Unified Model of Europa’s Tenuous Atmosphere
  • 2018
  • In: Space Science Reviews. - : Springer Netherlands. - 0038-6308 .- 1572-9672. ; 214:1
  • Research review (peer-reviewed)abstract
    • Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.
  •  
16.
  • Richard, M. S., et al. (author)
  • Energetics of Titan's ionosphere : Model comparisons with Cassini data
  • 2011
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A09310-
  • Journal article (peer-reviewed)abstract
    • Observed electron and ion temperatures in planetary ionospheres are higher than the neutral temperature. Instruments on board the Cassini spacecraft have shown this is also true for Titan. The Radio and Plasma Wave Science Langmuir Probe (RPWS-LP) (Wahlund et al., 2005) has measured electron temperatures above 1000 K. Ionospheric ion temperatures were deduced from a combined analysis of data from the Cassini Plasma Spectrometer and Ion and Neutral Mass Spectrometer (INMS) (Crary et al., 2009). Elevated electron temperatures attributed to heating by suprathermal electrons were predicted by pre-Cassini models (e.g., Gan et al., 1992; Roboz and Nagy, 1994) and observed by the Cassini electron spectrometer. Models of the energetic electrons and ions are presented that include Cassini inputs (i.e., measured neutral densities from INMS). The results are compared between 800 and 1800 km with suprathermal electron fluxes and plasma temperatures measured by Cassini instruments emphasizing the thermal electron temperature. Using only solar inputs, the dayside model agrees well with electron temperatures measured by RPWS-LP (Agren et al., 2009) between 1000 and 1400 km. At higher altitudes energy input from magnetospheric electrons is needed to reproduce the measured temperature. Incorporating typical magnetospheric electron fluxes into the dayside does not noticeably increase ion production near the ionospheric peak; however, effects can be seen near 1350 km. Joule heating effects are shown to be capable of contributing significantly to the ion temperature. Magnetospheric suprathermal electrons are shown to provide sufficient heating for the thermal electron population in the middle to upper ionosphere on the nightside.
  •  
17.
  • Royer, E. M., et al. (author)
  • Enhanced Airglow Signature Observed at Titan in Response to its Fluctuating Magnetospheric Environment
  • 2018
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:17, s. 8864-8870
  • Journal article (peer-reviewed)abstract
    • On rare occasions Titan has been observed in the magnetosheath, where the solar wind interferes with the regular magnetic field generated by Saturn. This particular orbital position allows for a deeper investigation of Titan's upper atmosphere response to its highly energetic magnetospheric environment. Although solar extreme ultraviolet radiation is known to be the main source of ionization in Titan's upper atmosphere, magnetospheric particle precipitation can also account for about 10% of the ionization process. We are reporting here on ultraviolet observations of Titan airglow enhancements occurring while the spacecraft and Titan are known to have been exposed to the magnetosheath environment. Using remote sensing Cassini Ultraviolet Imaging Spectrograph observations of Titan in correlation with in situ Cassini Plasma Spectrometer measurements, we present evidence of Titan's upper atmosphere response to an electron burst crossing the magnetosheath at the time of the T32 flyby, on 13 June 2007. Plain Language Summary Most of the time, Titan is embedded in Saturn's magnetosphere. The solar wind pressure on Saturn's magnetic field defines the size of the magnetospheric envelop around the planet. On rare occasion, this pressure is strong enough to reduce the size of Saturn's magnetospheric envelop, leaving Titan outside of it. We have been observing Titan and its immediate environment during such a configuration. The compression of the magnetic envelop allows for Titan uppermost layer of its atmosphere to directly interact with solar wind particles. We are reporting here on an observation showing a strong and sudden brightening of the upper atmosphere of Titan correlated with simultaneous measurements of an increase in electron energy around the satellite. Using remote sensing Cassini Ultraviolet Imaging Spectrograph observations of Titan in correlation with in situ Cassini Plasma Spectrometer measurements, we present evidence of Titan's upper atmosphere response to an electron burst passing by the Saturn's system at the time of the T32 flyby, on 13 June 2007, providing a better understanding of how magnetospheric environment and planetary atmospheres interact together.
  •  
18.
  • Sexton, Claire E., et al. (author)
  • Novel avenues of tau research
  • 2024
  • In: Alzheimer's and Dementia. - 1552-5260. ; 20:3, s. 2240-2261
  • Research review (peer-reviewed)abstract
    • INTRODUCTION: The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION: The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.
  •  
19.
  • Shebanits, Oleg, et al. (author)
  • Ion and aerosol precursor densities in Titan's ionosphere : A multi-instrument case study
  • 2016
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:10, s. 10075-10090
  • Journal article (peer-reviewed)abstract
    • The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below similar to 1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor >= 2 in the terminator and nightside ionosphere (n(e)/n(i) <= 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (n(e)/n(i) < 0.5 at 1000 km altitude). The average charge of the dust grains (>= 1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.
  •  
20.
  • Sillanpaeae, I., et al. (author)
  • Cassini Plasma Spectrometer and hybrid model study on Titan's interaction : Effect of oxygen ions
  • 2011
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A07223-
  • Journal article (peer-reviewed)abstract
    • During the Cassini Titan flyby on 2 July 2006 (T15), Titan was surrounded by a magnetospheric plasma flow with density about 0.1 cm(-3) as measured by Cassini Plasma Spectrometer (CAPS). A very low fraction of water group ions (O(+)) was detected in the flow dominated by hydrogen ions. We show that Titan's plasma interaction can be highly sensitive to the small fraction of oxygen ions in the magnetospheric flow. The ion quantities of the magnetospheric flow during the flyby were obtained from numerical moments calculated from the CAPS measurements; the average ambient magnetic field was determined using the Cassini magnetometer data. We simulated the flyby using a global hybrid model; the water group abundance in the flow was varied in three simulation runs. Based on the simulation results, the oxygen content has an especially notable effect on the extent of Titan's induced magnetosphere. A multi-instrument analysis was performed comparing with the simulations, whereby a comprehensive picture of the plasma properties around Titan during this flyby was obtained. Comparisons between the hybrid model simulations and Cassini measurements during the flyby point toward O+ density in the undisturbed magnetospheric flow having been around 0.008 cm(-3), which would have accounted for one half of the dynamic pressure of the flow.
  •  
21.
  • Wahlund, Jan Erik, et al. (author)
  • On the amount of heavy molecular ions in Titan's ionosphere
  • 2009
  • In: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:14-15, s. 1857-1865
  • Journal article (peer-reviewed)abstract
    • We present observational evidence that the ionosphere of Titan below an altitude of 1150 km is a significant source of heavy (> 100 amu) molecular organic species. This study is based on measurements by five instruments (RPWS/LP, RPWS/E, INMS, CAPS/ELS, CAPS/IBS) onboard the Cassini spacecraft during three flybys (T17, T18, T32) of Titan. The ionospheric peaks encountered at altitudes of 950-1300 km had densities in the range 900-3000 cm(-3). Below these peaks the number densities of heavy positively charged ions reached 100-2000 cm(-3) and approached 50-70% of the total ionospheric density with an increasing trend toward lowest measured altitudes. Simultaneously measured negatively charged ion densities were in the range 50-150 cm(-3). These results imply that similar to 10(5)similar to 10(6) heavy positively charged ions/m(3)/s are continuously recombining into heavy neutrals and supply the atmosphere of Titan. The ionosphere may in this way produce 0.1-1 Mt/yr of heavy organic compounds and is therefore a sizable source for aerosol formation. We also predict that Titan's ionosphere is dominated by heavy (> 100 amu) molecular ions below 950 km.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-21 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view