SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Descamps D) "

Search: WFRF:(Descamps D)

  • Result 1-25 of 90
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Aartsen, M. G., et al. (author)
  • The IceCube Neutrino Observatory : instrumentation and online systems
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
  •  
3.
  • Abbasi, R., et al. (author)
  • The IceCube data acquisition system : Signal capture, digitization, and timestamping
  • 2009
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 601:3, s. 294-316
  • Journal article (peer-reviewed)abstract
    • IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs). detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved. (c) 2009 Elsevier B.V. All rights reserved.
  •  
4.
  • Abbasi, R., et al. (author)
  • Cosmic ray composition and energy spectrum from 1-30 PeV using the 40-string configuration of IceTop and IceCube
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 42, s. 15-32
  • Journal article (peer-reviewed)abstract
    • The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
  •  
5.
  • Abbasi, R., et al. (author)
  • IceTop : The surface component of IceCube
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 700, s. 188-220
  • Journal article (peer-reviewed)abstract
    • IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km(2). The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.
  •  
6.
  • Abbasi, R., et al. (author)
  • Neutrino Analysis of the 2010 September Crab Nebula Flare and Time-Integrated Constraints on Neutrino Emission from the Crab Using Icecube
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 45-
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for high-energy muon neutrinos with the IceCube detector in coincidence with the Crab Nebula flare reported on 2010 September by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed. gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E-upsilon(2). neutrino spectrum typical of first-order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cutoffs as observed for various Galactic sources in. gamma-rays. The 90% confidence level (CL) best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(-11) cm(-2) s(-1) TeV-1 for an E-upsilon(2). neutrino spectrum and 2.50 x 10(-10) cm(-2) s(-1) TeV-1 for a softer neutrino spectra of E-upsilon(-2.7), as indicated by Fermi measurements during the flare. In this paper, we also illustrate the impact of the time-integrated limit on the Crab neutrino steady emission. The limit obtained using 375.5 days of the 40-string configuration is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.
  •  
7.
  • Abbasi, R., et al. (author)
  • Observation of anisotropy in the arrival directions of galactic cosmic rays at multiple angular scales with IceCube
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 740:1, s. 16-
  • Journal article (peer-reviewed)abstract
    • Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15 degrees and 30 degrees. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension alpha = 122 degrees.4 and declination d = -47 degrees.4), extends over at least 20 degrees in right ascension and has a post-trials significance of 5.3 sigma. The origin of this anisotropy is still unknown.
  •  
8.
  • Abbasi, R., et al. (author)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector
  • 2011
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:8, s. 082001-
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory is a 1 km(3) detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C. L. upper limit on the normalization of an E(-2) astrophysical nu(mu) flux of 8.9 x 10(-9) GeV cm(-2) s(-1) sr(-1). The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
  •  
9.
  • Abbasi, R., et al. (author)
  • An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts
  • 2012
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 484:7394, s. 351-354
  • Journal article (peer-reviewed)abstract
    • Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.
  •  
10.
  • Abbasi, R., et al. (author)
  • An improved method for measuring muon energy using the truncated mean of dE/dx
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 703, s. 190-198
  • Journal article (peer-reviewed)abstract
    • The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.
  •  
11.
  • Abbasi, R., et al. (author)
  • IceCube sensitivity for low-energy neutrinos from nearby supernovae
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A109-
  • Journal article (peer-reviewed)abstract
    • This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of similar to 1 km(3) in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of nu(e)'s released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
  •  
12.
  • Abbasi, R., et al. (author)
  • Lateral distribution of muons in IceCube cosmic ray events
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:1, s. 012005-
  • Journal article (peer-reviewed)abstract
    • In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations. DOI: 10.1103/PhysRevD.87.012005
  •  
13.
  • Abbasi, R., et al. (author)
  • Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors
  • 2012
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 85, s. 042002-
  • Journal article (peer-reviewed)abstract
    • A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.
  •  
14.
  • Abbasi, R., et al. (author)
  • Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:1, s. 33-
  • Journal article (peer-reviewed)abstract
    • In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic-ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic-ray-induced muons recorded by the partially deployed IceCube observatory between 2009 May and 2010 May. The data include a total of 33 x 10(9) muon events with a median angular resolution of similar to 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic-ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high-energy sky map shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic-ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
  •  
15.
  • Abbasi, R., et al. (author)
  • Search for relativistic magnetic monopoles with IceCube
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:2, s. 022001-
  • Journal article (peer-reviewed)abstract
    • We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km(3). This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km(3) of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Phi(90%C.L.) similar to 3 x 10(-18) cm(-2) sr(-1) s(-1) for beta >= 0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost gamma below 10(7). This result is then interpreted for a wide range of mass and kinetic energy values.
  •  
16.
  • Abbasi, R., et al. (author)
  • Searches for high-energy neutrino emission in the galaxy with the combined icecube-amanda detector
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 763:1, s. 33-
  • Journal article (peer-reviewed)abstract
    • We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice. By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below ∼10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized for multiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E -2 and E -3 in order to cover the entire range of possible neutrino spectra. The steeply falling E -3 neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E 3 dN/dE ∼ 5.4-19.5 × 10-11 TeV2 cm-2 s-1 for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date.
  •  
17.
  • Abbasi, R., et al. (author)
  • Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 748:2, s. 118-
  • Journal article (peer-reviewed)abstract
    • In this paper, we present the results of searches for periodic neutrino emission from a catalog of binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. In the analysis, the period is fixed by these photon observations, while the phase and duration of the neutrino emission are treated as free parameters to be fit with the data. If the emission occurs during similar to 20% or less of the total period, this analysis achieves better sensitivity than a time-integrated analysis. We use the IceCube data taken from 2007 May 31 to 2008 April 5 with its 22 string configuration and from 2008 April 5 to 2009 May 20 with its 40 string configuration. No evidence for neutrino emission is found, with the strongest excess occurring for Cygnus X-3 at 2.1 sigma significance after accounting for trials. Neutrino flux upper limits for both periodic and time-integrated emission are provided.
  •  
18.
  • Abbasi, R., et al. (author)
  • Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A60-
  • Journal article (peer-reviewed)abstract
    • Context. Transient neutrino sources such as gamma-ray bursts (GRBs) and supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of less than or similar to 100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 1051 erg, respectively, does not exceed 4.2% at 90% confidence.
  •  
19.
  • Abbasi, R., et al. (author)
  • The design and performance of IceCube DeepCore
  • 2012
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:10, s. 615-624
  • Journal article (peer-reviewed)abstract
    • The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
  •  
20.
  • Scott, P., et al. (author)
  • Use of event-level neutrino telescope data in global fits for theories of new physics
  • 2012
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11, s. 057-
  • Journal article (peer-reviewed)abstract
    • We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector con figuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e. g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.
  •  
21.
  • Aartsen, M. G., et al. (author)
  • Observation of Cosmic-Ray Anisotropy with the Icetop Air Shower Array
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 765:1, s. 55-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10(-3) level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46(stat) +/- 0.52(sys)) x 10(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38(stat) +/- 0.96(sys)) x 10(-3).
  •  
22.
  • Abbasi, R., et al. (author)
  • All-particle cosmic ray energy spectrum measured with 26 IceTop stations
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 44, s. 40-58
  • Journal article (peer-reviewed)abstract
    • We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km(2). The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0 degrees and 46 degrees. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles theta < 30 degrees, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed. 
  •  
23.
  • Abbasi, R., et al. (author)
  • Background studies for acoustic neutrino detection at the South Pole
  • 2012
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:6, s. 312-324
  • Journal article (peer-reviewed)abstract
    • The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E-v>10(11) GeV is derived from acoustic data taken over eight months. (C) 2011 Elsevier B.V. All rights reserved.
  •  
24.
  • Abbasi, R., et al. (author)
  • Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data
  • 2011
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998 .- 1550-2368. ; 83:9, s. 092003-
  • Journal article (peer-reviewed)abstract
    • We report on a search for extremely-high energy neutrinos with energies greater than 10(6) GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half-completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of live time significantly improves model-independent limits from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an E-2 spectrum in the energy range 2.0 x 10(6) - 6.3 x 10(9) GeV to a level of E-2 phi <= 3.6 x 10(-8) GeV cm(-2) sec(-1) sr(-1).
  •  
25.
  • Abbasi, R., et al. (author)
  • First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector
  • 2011
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:7, s. 072001-
  • Journal article (peer-reviewed)abstract
    • We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3 +/- 3.6. At 90% confidence we set an upper limit of E(2)Phi(90%CL) < 3.6 x 10(-7) GeV.cm(-2).s(-1).sr(-1) on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that Phi proportional to E(-2) and the flavor composition of the nu(e):nu(mu):nu(tau) flux is 1:1:1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 90

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view