SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dubus G.) "

Search: WFRF:(Dubus G.)

  • Result 1-25 of 102
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Acharya, B. S., et al. (author)
  • Introducing the CTA concept
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Journal article (other academic/artistic)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (author)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • In: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Journal article (peer-reviewed)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  • Abramowski, A., et al. (author)
  • The 2010 very high energy gamma-RAY flare and 10 years of multi-wavelength observations of M 87
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:2, s. 151-
  • Journal article (peer-reviewed)abstract
    • The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(>0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.
  •  
4.
  • Abramowski, A., et al. (author)
  • Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533, s. A110-
  • Journal article (peer-reviewed)abstract
    • The high-frequency peaked BL Lac object PKS 2005-489 was the target of a multi-wavelength campaign with simultaneous observations in the TeV gamma-ray (H.E.S.S.), GeV gamma-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E > 100 GeV) spectrum measured with H.E.S.S. with a peak energy between similar to 5 and 500 GeV. Compared to observations with contemporaneous coverage in the VHE and X-ray bands in 2004, the X-ray flux was similar to 50 times higher during the 2009 campaign while the TeV gamma-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.
  •  
5.
  • Aharonian, F., et al. (author)
  • SIMULTANEOUS OBSERVATIONS OF PKS 2155-304 WITH HESS, FERMI, RXTE, AND ATOM : SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 696:2, s. L150-L155
  • Journal article (peer-reviewed)abstract
    • We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of gamma-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; > 100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (similar to 30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
  •  
6.
  • Abdalla, H., et al. (author)
  • Gamma-ray blazar spectra with HESS II mono analysis : The case of PKS2155-304 and PG1553+113
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Journal article (peer-reviewed)abstract
    • Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
  •  
7.
  • Aliu, E., et al. (author)
  • Long-term TeV and X-ray Observations of the Gamma-ray Binary HESS J0632+057
  • 2014
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 780:2
  • Journal article (peer-reviewed)abstract
    • HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories in both thenorthern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The very-high-energy (VHE) emission is found to be variable and is correlated with that at X-ray energies. An orbital period of 315(-4)(+6) days is derived from the X-ray data set, which is compatible with previous results, P = (321 +/- 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-rayemission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (> 6.5 sigma) detection at orbital phases 0.6-0.9. Theobtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.
  •  
8.
  • Acciari, V. A., et al. (author)
  • Radio Imaging of the Very-High-Energy gamma-Ray Emission Region in the Central Engine of a Radio Galaxy
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5939, s. 444-448
  • Journal article (peer-reviewed)abstract
    • The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
  •  
9.
  • Petroff, E., et al. (author)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Journal article (peer-reviewed)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
10.
  • Abramowski, A., et al. (author)
  • A multiwavelength view of the flaring state of PKS 2155-304 in 2006
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A149-
  • Journal article (peer-reviewed)abstract
    • Context. Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E greater than or similar to 100 GeV) occurred, provide a detailed picture of the evolution of its emission. The complete data set from this campaign is presented, including observations in VHE gamma-rays (H.E.S. S.), X-rays (RXTE, Chandra, Swift XRT), optical (Swift UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source. Aims. The data set offers a close view of the evolution of the source on different time scales and yields new insights into the properties of the emission process. The predictions of synchrotron self-Compton (SSC) scenarios are compared to the MWL data, with the aim of describing the dominant features in the data down to the hour time scale. Methods. The spectral variability in the X-ray and VHE bands is explored and correlations between the integral fluxes at different wavelengths are evaluated. SSC modelling is used to interpret the general trends of the varying spectral energy distribution. Results. The X-ray and VHE gamma-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares. Spectral hardening is seen in the Swift XRT data. Conclusions. The nightly averaged high-energy spectra of the non-flaring nights can be reproduced by a stationary one-zone SSC model, with only small variations in the parameters. The spectral and flux evolution in the high-energy band during the night of the second VHE flare is modelled with multi-zone SSC models, which can provide relatively simple interpretations for the hour time-scale evolution of the high-energy emission, even for such a complex data set. For the first time in this type of source, a clear indication is found for a relation between high activity at high energies and a long-term increase in the low frequency fluxes.
  •  
11.
  • Abramowski, A., et al. (author)
  • A new SNR with TeV shell-type morphology : HESS J1731-347
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531, s. A81-
  • Journal article (peer-reviewed)abstract
    • Aims. The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731-347 has motivated further observations of the source with the High Energy Stereoscopic System (HESS) Cherenkov telescope array to test a possible association of the gamma-ray emission with the SNR. Methods. With a total of 59 h of observation, representing about four times the initial exposure available in the discovery paper of HESS J1731-347, the gamma-ray morphology is investigated and compared with the radio morphology. An estimate of the distance is derived by comparing the interstellar absorption derived from X-rays and the one obtained from (12)CO and HI observations. Results. The deeper gamma-ray observation of the source has revealed a large shell-type structure with similar position and extension (r similar to 0.25 degrees) as the radio SNR, thus confirming their association. By accounting for the HESS angular resolution and projection effects within a simple shell model, the radial profile is compatible with a thin, spatially unresolved, rim. Together with RX J1713.7-3946, RX J0852.0-4622 and SN 1006, HESS J1731-347 is now the fourth SNR with a significant shell morphology at TeV energies. The derived lower limit on the distance of the SNR of 3.2 kpc is used together with radio and X-ray data to discuss the possible origin of the gamma-ray emission, either via inverse Compton scattering of electrons or the decay of neutral pions resulting from proton-proton interaction.
  •  
12.
  • Abramowski, A., et al. (author)
  • Detection of very-high-energy gamma-ray emission from the vicinity of PSR B1706-44 and G 343.1-2.3 with HESS
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528, s. A143-
  • Journal article (peer-reviewed)abstract
    • The gamma-ray pulsar PSR B1706-44 and the adjacent supernova remnant (SNR) candidate G 343.1-2.3 were observed by H. E. S. S. during a dedicated observation campaign in 2007. As a result of this observation campaign, a new source of very-high-energy (VHE; E > 100 GeV) gamma-ray emission, H.E.S.S. J1708-443, was detected with a statistical significance of 7 sigma, although no significant point-like emission was detected at the position of the energetic pulsar itself. In this paper, the morphological and spectral analyses of the newly-discovered TeV source are presented. The centroid of H. E. S. S. J1708-443 is considerably offset from the pulsar and located near the apparent center of the SNR, at alpha(J2000) = 17(h)08(m)11(s) +/- 17(s) and delta(J2000) = -44 degrees 20' +/- 4'. The source is found to be significantly more extended than the H. E. S. S. point spread function (similar to 0.1 degrees), with an intrinsic Gaussian width of 0.29 degrees +/- 0.04 degrees. Its integral flux between 1 and 10 TeV is similar to 3.8 x 10(-1)2 ph cm(-2) s(-1), equivalent to 17% of the Crab Nebula flux in the same energy range. The measured energy spectrum is well-fit by a power law with a relatively hard photon index Gamma = 2.0 +/- 0.1(stat) +/-0.2(sys). Additional multi-wavelength data, including 330 MHz VLA observations, were used to investigate the VHE gamma-ray source's possible associations with the pulsar wind nebula of PSR B1706-44 and/or with the complex radio structure of the partial shell-type SNR G 343.1-2.3.
  •  
13.
  • Abramowski, A., et al. (author)
  • Discovery of extended VHE gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. A114-
  • Journal article (peer-reviewed)abstract
    • Aims. Results obtained in very-high-energy (VHE; E >= 100 GeV) gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1). Methods. Imaging of Cherenkov light from gamma-ray induced particle cascades in the Earth's atmosphere is used to search for VHE gamma rays from the region around Wd 1. Possible catalogued counterparts are searched for and discussed in terms of morphology and energetics of the H.E.S.S. source. Results. The detection of the degree-scale extended VHE gamma-ray source HESS J1646-458 is reported based on 45 h of H.E.S.S. observations performed between 2004 and 2008. The VHE gamma-ray source is centred on the nominal position of Wd 1 and detected with a total statistical significance of similar to 20 sigma. The emission region clearly extends beyond the H.E.S.S. point-spread function (PSF). The differential energy spectrum follows a power law in energy with an index of Gamma = 2.19 +/- 0.08(stat) +/- 0.20(sys) and a flux normalisation at 1 TeV of Phi(0) = (9.0 +/- 1.4(stat) +/- 1.8(sys)) x 10(-12) TeV-1 cm(-2) s(-1). The integral flux above 0.2 TeV amounts to (5.2 +/- 0.9) x 10(-11) cm(-2) s(-1). Conclusions. Four objects coincident with HESS J1646-458 are discussed in the search of a counterpart, namely the magnetar CXOU J164710.2-455216, the X-ray binary 4U 1642-45, the pulsar PSR J1648-4611 and the massive stellar cluster Wd 1. In a single-source scenario, Wd 1 is favoured as site of VHE particle acceleration. Here, a hadronic parent population would be accelerated within the stellar cluster. Beside this, there is evidence for a multi-source origin, where a scenario involving PSR J1648-4611 could be viable to explain parts of the VHE gamma-ray emission of HESS J1646-458.
  •  
14.
  • Abramowski, A., et al. (author)
  • Discovery of hard-spectrum gamma- ray emission from the BL Lacertae object 1ES 0414+009
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 538, s. A103-
  • Journal article (peer-reviewed)abstract
    • Context. 1ES 0414+009 (z = 0.287) is a distant high-frequency- peaked BL Lac object, and has long been considered a likely emitter of very-highenergy (VHE, E > 100 GeV) gamma-rays due to its high X-ray and radio flux. Aims. Observations in the VHE gamma-ray band and across the electromagnetic spectrum can provide insights into the origin of highly energetic particles present in the source and the radiation processes at work. Because of the distance of the source, the gamma-ray spectrum might provide further limits on the level of the extragalactic background light (EBL). Methods. We report observations made between October 2005 and December 2009 with H. E. S. S., an array of four imaging atmospheric Cherenkov telescopes. Observations at high energies (HE, 100 MeV-100 GeV) with the Fermi-LAT instrument in the first 20 months of its operation are also reported. To complete the multi-wavelength picture, archival UV and X-ray observations with the Swift satellite and optical observations with the ATOM telescope are also used. Results. Based on the observations with H.E.S.S., 1ES 0414+009 is detected for the first time in the VHE band. An excess of 224 events is measured, corresponding to a significance of 7.8 sigma. The photon spectrum of the source is well described by a power law, with photon index of Gamma(VHE) = 3.45 +/- 0.25(stat) +/- 0.20(syst). The integral flux above 200 GeV is (1.88 +/- 0.20(stat) +/- 0.38(syst)) x10(-12) cm(-2) s(-1). Observations with the Fermi-LAT in the first 20 months of operation show a flux between 200 MeV and 100 GeV of (2.3 +/- 0.2(stat)) x 10(-9) erg cm(-2) s(-1), and a spectrum well described by a power-law function with a photon index Gamma(HE) = 1.85 +/- 0.18. Swift/XRT observations show an X-ray flux between 2 and 10 keV of (0.8-1) x 10(-11) erg cm(-2) s(-1), and a steep spectrum Gamma(X) = (2.2-2.3). Combining X-ray with optical-UV data, a fit with a log-parabolic function locates the synchrotron peak around 0.1 keV. Conclusions. Although the GeV-TeV observations do not provide better constraints on the EBL than previously obtained, they confirm a low density of the EBL, close to the lower limits from galaxy counts. The absorption-corrected HE and VHE gamma-ray spectra are both hard and have similar spectral indices (approximate to 1.86), indicating no significant change of slope between the HE and VHE gamma-ray bands, and locating the gamma-ray peak in the SED above 1-2 TeV. As for other TeV BL Lac objects with the gamma-ray peak at such high energies and a large separation between the two SED humps, this average broad-band SED represents a challenge for simple one-zone synchrotron self-Compton models, requiring a high Doppler factor and very low B-field.
  •  
15.
  • Abramowski, A., et al. (author)
  • Discovery of the source HESS J1356-645 associated with the young and energetic PSR J1357-6429
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533, s. A103-
  • Journal article (peer-reviewed)abstract
    • Context. Several newly discovered very-high-energy (VHE; E > 100 GeV) gamma-ray sources in the Galaxy are thought to be associated with energetic pulsars. Among them, middle-aged (greater than or similar to 10(4) yr) systems exhibit large centre-filled VHE nebulae, offset from the pulsar position, which result from the complex relationship between the pulsar wind and the surrounding medium, and reflect the past evolution of the pulsar. Aims. Imaging Atmospheric Cherenkov Telescopes (IACTs) have been successful in revealing extended emission from these sources in the VHE regime. Together with radio and X-ray observations, this observational window allows one to probe the energetics and magnetic field inside these large-scale nebulae. Methods. H.E.S.S., with its large field of view, angular resolution of less than or similar to 0.1 degrees and unprecedented sensitivity, has been used to discover a large population of such VHE sources. In this paper, the H. E. S. S. data from the continuation of the Galactic Plane Survey (-80 degrees < l < 60 degrees, vertical bar b vertical bar < 3 degrees), together with the existing multi-wavelength observations, are used. Results. A new VHE gamma-ray source was discovered at RA (J2000) = 13(h)56(m)00(s), Dec (J2000) = -64 degrees 30'00 '' with a 2' statistical error in each coordinate, namely HESS J1356-645. The source is extended, with an intrinsic Gaussian width of (0.20 +/- 0.02)degrees. Its integrated energy flux between 1 and 10 TeV of 8 x 10(-12) erg cm(-2) s(-1) represents similar to 11% of the Crab Nebula flux in the same energy band. The energy spectrum between 1 and 20 TeV is well described by a power law dN/dE proportional to E-Gamma with photon index Gamma = 2.2 +/- 0.2(stat) +/- 0.2(sys). The inspection of archival radio images at three frequencies and the analysis of X-ray data from ROSAT/PSPC and XMM-Newton/MOS reveal the presence of faint non-thermal diffuse emission coincident with HESS J1356-645. Conclusions. HESS J1356-645 is most likely associated with the young and energetic pulsar PSR J1357-6429 (d = 2.4 kpc, tau(c) = 7.3 kyr and (E) over dot = 3.1 x 10(36) erg s(-1)), located at a projected distance of similar to 5 pc from the centroid of the VHE emission. HESS J1356-645 and its radio and X-ray counterparts would thus represent the nebula resulting from the past history of the PSR J1357-6429 wind. In a simple one-zone model, constraints on the magnetic field strength in the nebula are obtained from the flux of the faint and extended X-ray emission detected with ROSAT and XMM-Newton. Fermi-LAT upper limits in the high-energy ( HE; 0.1-100 GeV) domain are also used to constrain the parent electron spectrum. From the low magnetic field value inferred from this approach (similar to 3-4 mu G), HESS J1356-645 is thought to share many similarities with other known gamma-ray emitting nebulae, such as Vela X, as it exhibits a large-scale nebula seen in radio, X-rays and VHE gamma-rays.
  •  
16.
  • Abramowski, A., et al. (author)
  • Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 446:2, s. 1163-1169
  • Journal article (peer-reviewed)abstract
    • The region around the supernova remnant (SNR) W41 contains several TeV sources and has prompted the HESS Collaboration to perform deep observations of this field of view. This resulted in the discovery of the new very high energy (VHE) source HESS J1832-093, at the position RA = 18(h)32(m)50(s) +/- 3(stat)(s) +/- 2(syst)(s), Dec = -9 degrees 22'36 '' +/- 32(stat)'' +/- 20(syst)'' (J2000), spatially coincident with a part of the radio shell of the neighbouring remnant G22.7-0.2. The photon spectrum is well described by a power law of index Gamma = 2.6 +/- 0.3(stat) +/- 0.1(syst) and a normalization at 1 TeV of Phi(0) = (4.8 +/- 0.8(stat) +/- 1.0(syst)) x 10(-13) cm(-2) s(-1) TeV-1. The location of the gamma-ray emission on the edge of the SNR rim first suggested a signature of escaping cosmic rays illuminating a nearby molecular cloud. Then a dedicated XMM-Newton observation led to the discovery of a new X-ray point source spatially coincident with the TeV excess. Two other scenarios were hence proposed to identify the nature of HESS J1832-093. Gamma-rays from inverse Compton radiation in the framework of a pulsar wind nebula scenario or the possibility of gamma-ray production within a binary system are therefore also considered. Deeper multiwavelength observations will help to shed new light on this intriguing VHE source.
  •  
17.
  • Abramowski, A., et al. (author)
  • Flux upper limits for 47 AGN observed with HESS in 2004-2011
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 564, s. A9-
  • Journal article (peer-reviewed)abstract
    • Context. About 40% of the observation time of the High Energy Stereoscopic System (H.E.S.S.) is dedicated to studying active galactic nuclei (AGN), with the aim of increasing the sample of known extragalactic very-high-energy (VHE, E > 100 GeV) sources and constraining the physical processes at play in potential emitters. Aims. H.E.S.S. observations of AGN, spanning a period from April 2004 to December 2011, are investigated to constrain their gamma-ray fluxes. Only the 47 sources without significant excess detected at the position of the targets are presented. Methods. Upper limits on VHE fluxes of the targets were computed and a search for variability was performed on the nightly time scale. Results. For 41 objects, the flux upper limits we derived are the most constraining reported to date. These constraints at VHE are compared with the flux level expected from extrapolations of Fermi-LAT measurements in the two-year catalog of AGN. The H.E.S.S. upper limits are at least a factor of two lower than the extrapolated Fermi-LAT fluxes for 11 objects Taking into account the attenuation by the extragalactic background light reduces the tension for all but two of them, suggesting intrinsic curvature in the high-energy spectra of these two AGN. Conclusions. Compilation efforts led by current VHE instruments are of critical importance for target-selection strategies before the advent of the Cherenkov Telescope Array (CTA).
  •  
18.
  • Abramowski, A., et al. (author)
  • HESS and Fermi-LAT discovery of gamma-rays from the blazar 1ES 1312-423
  • 2013
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 434:3, s. 1889-1901
  • Journal article (peer-reviewed)abstract
    • A deep observation campaign carried out by the High Energy Stereoscopic System (HESS) on Centaurus A enabled the discovery of gamma-rays from the blazar 1ES 1312-423, 2 degrees away from the radio galaxy. With a differential flux at 1 TeV of phi(1 TeV) = (1.9 +/- 0.6(stat) +/- 0.4(sys)) x 10(-13) cm(-2) s(-1) TeV-1 corresponding to 0.5 per cent of the Crab nebula differential flux and a spectral index Gamma = 2.9 +/- 0.5(stat) +/- 0.2(sys), 1ES 1312-423 is one of the faintest sources ever detected in the very high energy (E > 100 GeV) extragalactic sky. A careful analysis using three and a half years of Fermi Large Area Telescope (Fermi-LAT) data allows the discovery at high energies (E > 100 MeV) of a hard spectrum (Gamma = 1.4 +/- 0.4(stat) +/- 0.2(sys)) source coincident with 1ES 1312-423. Radio, optical, UV and X-ray observations complete the spectral energy distribution of this blazar, now covering 16 decades in energy. The emission is successfully fitted with a synchrotron self-Compton model for the non-thermal component, combined with a blackbody spectrum for the optical emission from the host galaxy.
  •  
19.
  • Abramowski, A., et al. (author)
  • HESS J1640-465-an exceptionally luminous TeV gamma-ray supernova remnant
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 439:3, s. 2828-2836
  • Journal article (peer-reviewed)abstract
    • The results of follow-up observations of the TeV gamma-ray source HESS J1640-465 from 2004 to 2011 with the High Energy Stereoscopic System (HESS) are reported in this work. The spectrum is well described by an exponential cut-off power law with photon index Gamma = 2.11 +/- 0.09(stat) +/- 0.10(sys), and a cut-off energy of E-2 = 6.0(-1.2)(+2.0) TeV. The TeV emission is significantly extended and overlaps with the northwestern part of the shell of the SNR G338.3-0.0. The new HESS results, a re-analysis of archival XMM-Newton data and multiwavelength observations suggest that a significant part of the gamma-ray emission from HESS J1640-465 originates in the supernova remnant shell. In a hadronic scenario, as suggested by the smooth connection of the GeV and TeV spectra, the product of total proton energy and mean target density could be as high as W(p)n(H) similar to 4 x 10(52)(d/10kpc)(2) erg cm(-3).
  •  
20.
  • Abramowski, A., et al. (author)
  • HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 562, s. 562-
  • Journal article (peer-reviewed)abstract
    • Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and gamma-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G15.4+0.1 performed with the High Energy Stereoscopic System (H. E. S. S.) and XMM-Newton. A compact TeV gamma-ray source, HESS J1818-154, located in the center and contained within the shell of G15.4+0.1 is detected by H. E. S. S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 +/- 0.3(stat) +/- 0.2(sys) and an integral flux of F(>0.42 TeV) = (0.9 +/- 0.3(stat) +/- 0.2(sys)) x 10(-12) cm(-2) s(-1). Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE gamma-ray emission provide strong evidence of a PWN located inside the shell of G15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and gamma-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G15.4+0.1.
  •  
21.
  • Abramowski, A., et al. (author)
  • Probing the gamma-ray emission from HESS J1834-087 using HESS and Fermi LAT observations
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Journal article (peer-reviewed)abstract
    • Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E > 100 GeV) gamma-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the gamma-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The gamma-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the gamma-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sigma(TeV) = 0.17 degrees +/- 0.01 degrees), both centered on SNR W41 and exhibiting spectra described by a power law with index Gamma(TeV) similar or equal to 2.6. The GeV source detected with Fermi LAT is extended (sigma(GeV) = 0.15 degrees +/- 0.03 degrees) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Gamma(GeV) = 2.15 +/- 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the gamma-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to gamma-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (> 10(37) erg s(-1)). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling.
  •  
22.
  • Abramowski, A., et al. (author)
  • Search for dark matter annihilation signals from the Fornax galaxy cluster with H.E.S.S.
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 750:2
  • Journal article (peer-reviewed)abstract
    • The Fornax galaxy cluster was observed with the High Energy Stereoscopic System for a total live time of 14.5 hr, searching for very high energy (VHE; E > 100GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of (95% C.L.) similar to 10(-23) cm(3) s(-1), depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of (95% C.L.) similar to 10(-26) cm(3) s(-1).
  •  
23.
  • Abramowski, A., et al. (author)
  • Search for extended gamma-ray emission around AGN with HESS and Fermi-LAT
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 562, s. A145-
  • Journal article (peer-reviewed)abstract
    • Context. Very-high-energy (VHE; E > 100 GeV) gamma-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these gamma-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially- beamed source or a magnetically- broadened cascade :aux. Aims. Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, IRS 0229+200, and PKS 2155-304 were searched for using VHE y-ray data taken with the High Energy Stereoscopic System (HESS.) and high-energy (HE; 100 MeV < E < 100 GeV) gamma-ray data with the Fermi Large Area Telescope (LAT). Methods. By comparing the angular distributions of the reconstructed gamma-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results. Upper limits on the extended emission around lES 1101-232, lES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGME) values, >10(-12) G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs. EGMF strengths in the range (0.3-3) x 10(-15) G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.
  •  
24.
  • Abramowski, A., et al. (author)
  • TeV gamma-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with HESS
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 441:1, s. 790-799
  • Journal article (peer-reviewed)abstract
    • The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) gamma-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE gamma-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H. E. S. S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant gamma-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Gamma = 2.5 were set at 5.6 x 10(-1)3 cm(-2) s(-1) above 0.26 TeV and 3.2 x 10(-12) cm(-2) s(-1) above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to B-G1.9 greater than or similar to 12 mu G for G1.9+0.3 and to B-G330 greater than or similar to 8 mu G for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.
  •  
25.
  • Abramowski, A., et al. (author)
  • The high-energy gamma-ray emission of AP Librae
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Journal article (peer-reviewed)abstract
    • The gamma-ray spectrum of the low-frequency-peaked BL Lac (LBL) object AP Librae is studied, following the discovery of very-high-energy (VHE; E > 100 GeV) gamma-ray emission up to the TeV range by the H.E.S.S. experiment. Thismakes AP Librae one of the few VHE emitters of the LBL type. The measured spectrum yields a flux of (8.8 +/- 1.5(stat) +/- 1.8(sys)) x 10(-12) cm(-2) s(-1) above 130 GeV and a spectral index of Gamma = 2.65 +/- 0.19(stat) +/- 0.20(sys). This study also makes use of Fermi-LAT observations in the high energy (HE, E > 100 MeV) range, providing the longest continuous light curve (5 years) ever published on this source. The source underwent a flaring event between MJD 56 306-56 376 in the HE range, with a flux increase of a factor of 3.5 in the 14 day bin light curve and no significant variation in spectral shape with respect to the low-flux state. While the H.E.S.S. and (low state) Fermi-LAT fluxes are in good agreement where they overlap, a spectral curvature between the steep VHE spectrum and the Fermi-LAT spectrum is observed. The maximum of the gamma-ray emission in the spectral energy distribution is located below the GeV energy range.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 102

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view