SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dufour Jean Francois) "

Search: WFRF:(Dufour Jean Francois)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Engert, Andreas, et al. (author)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • In: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Journal article (peer-reviewed)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
2.
  •  
3.
  •  
4.
  • Anstee, Quentin M., et al. (author)
  • Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically-characterised cohort
  • 2020
  • In: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:3, s. 505-515
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND AIMS: Genetic factors associated with non-alcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most GWAS studies have adopted radiologically assessed hepatic triglyceride content as reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a genome-wide association study (GWAS) encompassing the full spectrum of histologically characterized NAFLD.METHODS: The GWAS involved 1483 European NAFLD cases and 17781 genetically-matched population controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance.RESULTS: Case-control analysis identified signals showing p-values ≤ 5 x 10-8 at four locations (chromosome (chr) 2 GCKR/C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together with two other signals with p<1 x10-7 (chr1 near LEPR and chr8 near IDO2/TC1). Case-only analysis of quantitative traits steatosis, disease activity score, NAS and fibrosis showed that the PNPLA3 signal (rs738409) was genome-wide significantly associated with steatosis, fibrosis and NAS score and identified a new signal (PYGO1 rs62021874) with close to genome-wide significance for steatosis (p=8.2 x 10-8). Subgroup case-control analysis for NASH confirmed the PNPLA3 signal. The chr1 LEPR SNP also showed genome-wide significance for this phenotype. Considering the subgroup with advanced fibrosis (≥F3), the signals on chromosomes 2, 19 and 22 remained genome-wide significant. With the exception of GCKR/C2ORF16, the genome-wide significant signals replicated.CONCLUSIONS: This study confirms PNPLA3 as a risk factor for the full histological spectrum of NAFLD at genome-wide significance levels, with important contributions from TM6SF2 and HSD17B13. PYGO1 is a novel steatosis modifier, suggesting relevance of Wnt signalling pathways in NAFLD pathogenesis.
  •  
5.
  • Hardy, Timothy, et al. (author)
  • The European NAFLD Registry : A real-world longitudinal cohort study of nonalcoholic fatty liver disease
  • 2020
  • In: Contemporary Clinical Trials. - : Elsevier. - 1551-7144 .- 1559-2030. ; 98
  • Journal article (peer-reviewed)abstract
    • Non-Alcoholic Fatty Liver Disease (NAFLD), a progressive liver disease that is closely associated with obesity, type 2 diabetes, hypertension and dyslipidaemia, represents an increasing global public health challenge. There is significant variability in the disease course: the majority exhibit only fat accumulation in the liver but a significant minority develop a necroinflammatory form of the disease (non-alcoholic steatohepatitis, NASH) that may progress to cirrhosis and hepatocellular carcinoma. At present our understanding of pathogenesis, disease natural history and long-term outcomes remain incomplete. There is a need for large, well characterised patient cohorts that may be used to address these knowledge gaps and to support the development of better biomarkers and novel therapies. The European NAFLD Registry is an international, prospectively recruited observational cohort study that aims to establish a large, highly-phenotyped patient cohort and linked bioresource. Here we describe the infrastructure, data management and monitoring plans, and the standard operating procedures implemented to ensure the timely and systematic collection of high-quality data and samples. Already recruiting subjects at secondary/tertiary care centres across Europe, the Registry is supporting the European Union IMI2-funded LITMUS Liver Investigation: Testing Marker Utility in Steatohepatitis consortium, which is a major international effort to robustly validate biomarkers that diagnose, risk stratify and/or monitor NAFLD progression and liver fibrosis stage. The European NAFLD Registry has the demonstrable capacity to support research and biomarker development at scale and pace.
  •  
6.
  • Lee, Jenny, et al. (author)
  • Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study
  • 2023
  • In: Hepatology. - : LIPPINCOTT WILLIAMS & WILKINS. - 0270-9139 .- 1527-3350. ; 78:1, s. 258-271
  • Journal article (peer-reviewed)abstract
    • Background and Aims: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F >= 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. Approach and Results: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS >= 4;53%), at-risk NASH (NASH with F >= 2;35%), significant (F >= 2;47%), and advanced fibrosis (F >= 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). Conclusions: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
  •  
7.
  • Masoodi, Mojgan, et al. (author)
  • Metabolomics and lipidomics in NAFLD : biomarkers and non-invasive diagnostic tests
  • 2021
  • In: Nature Reviews. Gastroenterology & Hepatology. - : Nature Publishing Group. - 1759-5045 .- 1759-5053. ; 18:12, s. 835-856
  • Research review (peer-reviewed)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
  •  
8.
  • Mcteer, Matthew, et al. (author)
  • Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information
  • 2024
  • In: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 19:2
  • Journal article (peer-reviewed)abstract
    • Aims Metabolic dysfunction Associated Steatotic Liver Disease (MASLD) outcomes such as MASH (metabolic dysfunction associated steatohepatitis), fibrosis and cirrhosis are ordinarily determined by resource-intensive and invasive biopsies. We aim to show that routine clinical tests offer sufficient information to predict these endpoints.Methods Using the LITMUS Metacohort derived from the European NAFLD Registry, the largest MASLD dataset in Europe, we create three combinations of features which vary in degree of procurement including a 19-variable feature set that are attained through a routine clinical appointment or blood test. This data was used to train predictive models using supervised machine learning (ML) algorithm XGBoost, alongside missing imputation technique MICE and class balancing algorithm SMOTE. Shapley Additive exPlanations (SHAP) were added to determine relative importance for each clinical variable.Results Analysing nine biopsy-derived MASLD outcomes of cohort size ranging between 5385 and 6673 subjects, we were able to predict individuals at training set AUCs ranging from 0.719-0.994, including classifying individuals who are At-Risk MASH at an AUC = 0.899. Using two further feature combinations of 26-variables and 35-variables, which included composite scores known to be good indicators for MASLD endpoints and advanced specialist tests, we found predictive performance did not sufficiently improve. We are also able to present local and global explanations for each ML model, offering clinicians interpretability without the expense of worsening predictive performance.Conclusions This study developed a series of ML models of accuracy ranging from 71.9-99.4% using only easily extractable and readily available information in predicting MASLD outcomes which are usually determined through highly invasive means.
  •  
9.
  • Vali, Yasaman, et al. (author)
  • Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project) : a comparative diagnostic accuracy study
  • 2023
  • In: The Lancet Gastroenterology & Hepatology. - : Elsevier Ltd. - 2468-1253. ; 8:8, s. 714-725
  • Journal article (peer-reviewed)abstract
    • Background: The reference standard for detecting non-alcoholic steatohepatitis (NASH) and staging fibrosis—liver biopsy—is invasive and resource intensive. Non-invasive biomarkers are urgently needed, but few studies have compared these biomarkers in a single cohort. As part of the Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS) project, we aimed to evaluate the diagnostic accuracy of 17 biomarkers and multimarker scores in detecting NASH and clinically significant fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) and identify their optimal cutoffs as screening tests in clinical trial recruitment. Methods: This was a comparative diagnostic accuracy study in people with biopsy-confirmed NAFLD from 13 countries across Europe, recruited between Jan 6, 2010, and Dec 29, 2017, from the LITMUS metacohort of the prospective European NAFLD Registry. Adults (aged ≥18 years) with paired liver biopsy and serum samples were eligible; those with excessive alcohol consumption or evidence of other chronic liver diseases were excluded. The diagnostic accuracy of the biomarkers was expressed as the area under the receiver operating characteristic curve (AUC) with liver histology as the reference standard and compared with the Fibrosis-4 index for liver fibrosis (FIB-4) in the same subgroup. Target conditions were the presence of NASH with clinically significant fibrosis (ie, at-risk NASH; NAFLD Activity Score ≥4 and F≥2) or the presence of advanced fibrosis (F≥3), analysed in all participants with complete data. We identified thres holds for each biomarker for reducing the number of biopsy-based screen failures when recruiting people with both NASH and clinically significant fibrosis for future trials. Findings: Of 1430 participants with NAFLD in the LITMUS metacohort with serum samples, 966 (403 women and 563 men) were included after all exclusion criteria had been applied. 335 (35%) of 966 participants had biopsy-confirmed NASH and clinically significant fibrosis and 271 (28%) had advanced fibrosis. For people with NASH and clinically significant fibrosis, no single biomarker or multimarker score significantly reached the predefined AUC 0·80 acceptability threshold (AUCs ranging from 0·61 [95% CI 0·54–0·67] for FibroScan controlled attenuation parameter to 0·81 [0·75–0·86] for SomaSignal), with accuracy mostly similar to FIB-4. Regarding detection of advanced fibrosis, SomaSignal (AUC 0·90 [95% CI 0·86–0·94]), ADAPT (0·85 [0·81–0·89]), and FibroScan liver stiffness measurement (0·83 [0·80–0·86]) reached acceptable accuracy. With 11 of 17 markers, histological screen failure rates could be reduced to 33% in trials if only people who were marker positive had a biopsy for evaluating eligibility. The best screening performance for NASH and clinically significant fibrosis was observed for SomaSignal (number needed to test [NNT] to find one true positive was four [95% CI 4–5]), then ADAPT (six [5–7]), MACK-3 (seven [6–8]), and PRO-C3 (nine [7–11]). Interpretation: None of the single markers or multimarker scores achieved the predefined acceptable AUC for replacing biopsy in detecting people with both NASH and clinically significant fibrosis. However, several biomarkers could be applied in a prescreening strategy in clinical trial recruitment. The performance of promising markers will be further evaluated in the ongoing prospective LITMUS study cohort. Funding: The Innovative Medicines Initiative 2 Joint Undertaking. © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9
Type of publication
journal article (8)
research review (1)
Type of content
peer-reviewed (7)
other academic/artistic (2)
Author/Editor
Anstee, Quentin M. (8)
Dufour, Jean-Francoi ... (8)
Tiniakos, Dina (7)
Francque, Sven (7)
Bugianesi, Elisabett ... (7)
Ratziu, Vlad (7)
show more...
Bedossa, Pierre (6)
Ekstedt, Mattias (6)
Aithal, Guruprasad P ... (6)
Yki-Jarvinen, Hannel ... (6)
Allison, Michael (5)
Petta, Salvatore (5)
Valenti, Luca (5)
Holleboom, Adriaan G ... (4)
Geier, Andreas (4)
Kechagias, Stergios (3)
Daly, Ann K. (3)
Darlay, Rebecca (3)
Cockell, Simon (3)
Meroni, Marica (3)
Govaere, Olivier (3)
Burt, Alastair D. (3)
Palmer, Jeremy (3)
Liu, Yang-Lin (3)
Vacca, Michele (3)
Invernizzi, Pietro (3)
Prati, Daniele (3)
Clement, Karine (3)
Day, Christopher P. (3)
Cordell, Heather J. (3)
Schattenberg, Joern ... (3)
Romero-Gomez, Manuel (3)
Boursier, Jerome (3)
Torstenson, Richard (3)
Cortez-Pinto, Helena (3)
Wonders, Kristy (3)
Cobbold, Jeremy (3)
Pavlides, Michael (3)
Orešič, Matej, 1967- (2)
Schattenberg, Jorn M ... (2)
Schattenberg, Jörn M ... (2)
Miele, Luca (2)
Chen, Yu (2)
Harrison, Stephen (2)
Yunis, Carla (2)
Karsdal, Morten (2)
Leeming, Diana Julie (2)
Lee, Jenny (2)
Vali, Yasaman (2)
Ostroff, Rachel (2)
show less...
University
Linköping University (8)
Örebro University (2)
Umeå University (1)
Lund University (1)
Karolinska Institutet (1)
Language
English (9)
Research subject (UKÄ/SCB)
Medical and Health Sciences (6)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view