SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ehrhart F) "

Search: WFRF:(Ehrhart F)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Menden, MP, et al. (author)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Journal article (peer-reviewed)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
2.
  • Keskinen, H., et al. (author)
  • Evolution of Nanoparticle Composition in CLOUD in Presence of Sulphuric Acid, Ammonia and Organics
  • 2013
  • In: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 291-294
  • Conference paper (peer-reviewed)abstract
    • In this study, we investigate the composition of nucleated nanoparticles formed from sulphuric acid, ammonia, amines, and oxidised organics in the CLOUD chamber experiments at CERN. The investigation is carried out via analysis of the particle hygroscopicity (size range of 15-63 nm), ethanol affinity (15-50nm), oxidation state (<50 nm), and ion composition (few nanometers). The organic volume fraction of particles increased with an increase in particle diameter in presence of the sulphuric acid, ammonia and organics. Vice versa, the sulphuric acid volume fraction decreased when the particle diameter increased. The results provide information on the size-dependent composition of nucleated aerosol particles.
  •  
3.
  • Martens, M, et al. (author)
  • A Community-Driven, Openly Accessible Molecular Pathway Integrating Knowledge on Malignant Pleural Mesothelioma
  • 2022
  • In: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 849640-
  • Journal article (peer-reviewed)abstract
    • Malignant pleural mesothelioma (MPM) is a highly aggressive malignancy mainly triggered by exposure to asbestos and characterized by complex biology. A significant body of knowledge has been generated over the decades by the research community which has improved our understanding of the disease toward prevention, diagnostic opportunities and new treatments. Omics technologies are opening for additional levels of information and hypotheses. Given the growing complexity and technological spread of biological knowledge in MPM, there is an increasing need for an integrating tool that may allow scientists to access the information and analyze data in a simple and interactive way. We envisioned that a platform to capture this widespread and fast-growing body of knowledge in a machine-readable and simple visual format together with tools for automated large-scale data analysis could be an important support for the work of the general scientist in MPM and for the community to share, critically discuss, distribute and eventually advance scientific results. Toward this goal, with the support of experts in the field and informed by existing literature, we have developed the first version of a molecular pathway model of MPM in the biological pathway database WikiPathways. This provides a visual and interactive overview of interactions and connections between the most central genes, proteins and molecular pathways known to be involved or altered in MPM. Currently, 455 unique genes and 247 interactions are included, derived after stringent manual curation of an initial 39 literature references. The pathway model provides a directly employable research tool with links to common databases and repositories for the exploration and the analysis of omics data. The resource is publicly available in the WikiPathways database (Wikipathways : WP5087) and continues to be under development and curation by the community, enabling the scientists in MPM to actively participate in the prioritization of shared biological knowledge.
  •  
4.
  •  
5.
  • Kim, J., et al. (author)
  • Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments
  • 2016
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:1, s. 293-304
  • Journal article (peer-reviewed)abstract
    • Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study,we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at sub-saturated conditions (ca. 90% relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from alpha-pinene oxidation. The hygroscopicity parameter kappa decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5.1 x 10(6) molecules cm(-3) in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured kappa of 15 nm particles was 0.31 +/- 0.01: close to the value reported for dimethylaminium sulfate (DMAS) (kappa(DMAS) similar to 0.28). Furthermore, the difference in kappa between sulfuric acid and sulfuric acid-dimethylamine experiments increased with increasing particle size. The kappa values of particles in the presence of sulfuric acid and organics were much smaller than those of particles in the presence of sulfuric acid and dimethylamine. This suggests that the organics produced from alpha-pinene ozonolysis play a significant role in particle growth even at 10 nm sizes.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view